Skip to main content
Log in

In-situ reduction synthesis of manganese dioxide@polypyrrole core/shell nanomaterial for highly efficient enrichment of U(VI) and Eu(III)

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Radionuclides with long half-life are toxic, and thereby result in serious threat to human beings and ecological balance. Herein, a simple two-step synthesis method was used to prepare manganese dioxide@polypyrrole (MnO2@PPy) core/shell structures for efficient removal of U(VI) and Eu(III) from aqueous solutions. The adsorption of U(VI) and Eu(III) were investigated under different kinds of experimental conditions. The experimental results suggested that the adsorption of U(VI) and Eu(III) on MnO2@PPy were greatly affected by pH. U(VI) adsorption on MnO2@PPy was independent of ionic strength at pH<6.0, and dependent on ionic strength at pH>6.0. However, Eu(III) adsorption on MnO2@PPy was independent of ionic strength at the whole pH range of experimental conditions. The maximum adsorption capacities (qmax) of U(VI) and Eu(III) were 63.04 and 54.74 mg g−1 at T=298 K, respectively. The BET, XRD, FTIR and XPS analysis evidenced that high adsorption capacities of U (VI) and Eu(III) on MnO2@PPy were mainly due to high surface area and rich metal oxygen-containing group (i.e., Mn–OH and Mn–O), and the interaction was mainly attributed to strong surface complexation and electrostatic interaction. This study highlighted the excellent adsorption performance of U(VI) and Eu(III) on MnO2@PPy and could provide the reference for the elimination of radionuclides in real wastewater management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sun Y, Yang S, Chen Y, Ding C, Cheng W, Wang X. Environ Sci Technol, 2015, 49: 4255–4262

    Article  CAS  PubMed  Google Scholar 

  2. Abdi S, Nasiri M, Mesbahi A, Khani MH. J Hazard Mater, 2017, 332: 132–139

    Article  CAS  PubMed  Google Scholar 

  3. Yang W, Bai ZQ, Shi WQ, Yuan LY, Tian T, Chai ZF, Wang H, Sun ZM. Chem Commun, 2013, 49: 10415–10417

    Article  CAS  Google Scholar 

  4. Sun Y, Wu ZY, Wang X, Ding C, Cheng W, Yu SH, Wang X. Environ Sci Technol, 2016, 50: 4459–4467

    Article  CAS  PubMed  Google Scholar 

  5. Duster TA, Szymanowski JES, Fein JB. Environ Sci Technol, 2017, 51: 8510–8518

    Article  CAS  PubMed  Google Scholar 

  6. Zou Y, Liu Y, Wang X, Sheng G, Wang S, Ai Y, Ji Y, Liu Y, Hayat T, Wang X. ACS Sustain Chem Eng, 2017, 5: 3583–3595

    Article  CAS  Google Scholar 

  7. Yu S, Wang J, Song S, Sun K, Li J, Wang X, Chen Z, Wang X. Sci China Chem, 2017, 60: 415–422

    Article  CAS  Google Scholar 

  8. Zhao D, Chen L, Xu M, Feng S, Ding Y, Wakeel M, Alharbi NS, Chen C. ACS Sustain Chem Eng, 2017, 5: 10290–10297

    Article  CAS  Google Scholar 

  9. Štastný M, Tolasz J, Štengl V, Henych J, Žižka D. Appl Surf Sci, 2017, 412: 19–28

    Article  CAS  Google Scholar 

  10. Yang D, Song S, Zou Y, Wang X, Yu S, Wen T, Wang H, Hayat T, Alsaedi A, Wang X. Chem Eng J, 2017, 323: 143–152

    Article  CAS  Google Scholar 

  11. Ding C, Cheng W, Sun Y, Wang X. Dalton Trans, 2014, 43: 3888–3896

    Article  CAS  PubMed  Google Scholar 

  12. Zhao G, Jiang L, He Y, Li J, Dong H, Wang X, Hu W. Adv Mater, 2011, 23: 3959–3963

    Article  CAS  PubMed  Google Scholar 

  13. Yu S, Wang X, Pang H, Zhang R, Song W, Fu D, Hayat T, Wang X. Chem Eng J, 2018, 333: 343–360

    Article  CAS  Google Scholar 

  14. Cui W, Li P, Wang Z, Zheng S, Zhang Y. J Hazard Mater, 2018, 341: 268–276

    Article  CAS  PubMed  Google Scholar 

  15. Chia CL, Avendaño C, Siperstein FR, Filip S. Langmuir, 2017, 33: 11257–11263

    Article  CAS  PubMed  Google Scholar 

  16. Yu S, Wang X, Yao W, Wang J, Ji Y, Ai Y, Alsaedi A, Hayat T, Wang X. Environ Sci Technol, 2017, 51: 3278–3286

    Article  CAS  PubMed  Google Scholar 

  17. Ren X, Li J, Tan X, Shi W, Chen C, Shao D, Wen T, Wang L, Zhao G, Sheng G, Wang X. Environ Sci Technol, 2014, 48: 5493–5500

    Article  CAS  PubMed  Google Scholar 

  18. Zhang K, Li H, Xu X, Yu H. Micropor Mesopor Mater, 2018, 255: 7–14

    Article  CAS  Google Scholar 

  19. Kang D, Yu X, Ge M. Chem Eng J, 2017, 330: 36–43

    Article  CAS  Google Scholar 

  20. Xiao G, Chen W, Peng S, Yu C, Jiang Z. Comput Mater Sci, 2018, 142: 72–81

    Article  CAS  Google Scholar 

  21. He Y, Jiang DB, Chen J, Jiang DY, Zhang YX. J Colloid Interface Sci, 2018, 510: 207–220

    Article  CAS  PubMed  Google Scholar 

  22. Chen M, Wu P, Yu L, Liu S, Ruan B, Hu H, Zhu N, Lin Z. J Environ Manage, 2017, 192: 31–38

    Article  CAS  PubMed  Google Scholar 

  23. Yuan D, Zhang T, Guo Q, Qiu F, Yang D, Ou Z. Chem Eng J, 2017, 327: 539–547

    Article  CAS  Google Scholar 

  24. Zhou J, Lü QF, Luo JJ. J Cleaner Product, 2017, 167: 739–748

    Article  CAS  Google Scholar 

  25. Brandão M, Galembeck F. Colloids Surfs, 1990, 48: 351–362

    Article  Google Scholar 

  26. Yao W, Wang X, Liang Y, Yu S, Gu P, Sun Y, Xu C, Chen J, Hayat T, Alsaedi A, Wang X. Chem Eng J, 2018, 332: 775–786

    Article  CAS  Google Scholar 

  27. Han L, Tang P, Zhang L. Nano Energy, 2014, 7: 42–51

    Article  CAS  Google Scholar 

  28. He W, Wang C, Zhuge F, Deng X, Xu X, Zhai T. Nano Energy, 2017, 35: 242–250

    Article  CAS  Google Scholar 

  29. Yao W, Yu S, Wang J, Zou Y, Lu S, Ai Y, Alharbi NS, Alsaedi A, Hayat T, Wang X. Chem Eng J, 2017, 307: 476–486

    Article  CAS  Google Scholar 

  30. Yu S, Wang X, Ai Y, Liang Y, Ji Y, Li J, Hayat T, Alsaedi A, Wang X. Environ Sci-Nano, 2016, 3: 1361–1368

    Article  CAS  Google Scholar 

  31. Zhang YX, Kuang M, Hao XD, Liu Y, Huang M, Guo XL, Yan J, Han GQ, Li J. J Power Sources, 2014, 270: 675–683

    Article  CAS  Google Scholar 

  32. Yu S, Wang X, Chen Z, Wang J, Wang S, Hayat T, Wang X. J Hazard Mater, 2017, 321: 111–120

    Article  CAS  PubMed  Google Scholar 

  33. Kuang M, Wen ZQ, Guo XL, Zhang SM, Zhang YX. J Power Sources, 2014, 270: 426–433

    Article  CAS  Google Scholar 

  34. Mallakpour S, Motirasoul F. Ultrasons Sonochem, 2018, 40: 410–418

    Article  CAS  Google Scholar 

  35. Chen Y, Zhang W, Yang S, Hobiny A, Alsaedi A, Wang X. Sci China Chem, 2016, 59: 412–419

    Article  CAS  Google Scholar 

  36. Ni L, Zhao G, Yang G, Niu G, Chen M, Diao G. ACS Appl Mater Interfaces, 2017, 9: 34793–34803

    Article  CAS  PubMed  Google Scholar 

  37. Li J, Chen C, Zhang R, Wang X. Sci China Chem, 2016, 59: 150–158

    Article  CAS  Google Scholar 

  38. Liu X, Wang X, Li J, Wang X. Sci China Chem, 2016, 59: 869–877

    Article  CAS  Google Scholar 

  39. Chen S, Zhu J, Wu X, Han Q, Wang X. ACS Nano, 2010, 4: 2822–2830

    Article  CAS  PubMed  Google Scholar 

  40. Wang X, Yu S, Chen Z, Song W, Chen Y, Hayat T, Alsaedi A, Guo W, Hu J, Wang X. Sci China Chem, 2017, 60: 107–114

    Article  CAS  Google Scholar 

  41. Xia L, Tan K, Wang X, Zheng W, Liu W, Deng C. J Environ Eng, 2013, 139: 887–895

    Article  CAS  Google Scholar 

  42. Xie S, Zhang C, Zhou X, Yang J, Zhang X, Wang J. J Environ Radioact, 2009, 100: 162–166

    Article  CAS  Google Scholar 

  43. Li X, Li F, Jin Y, Jiang C. J Mol Liquids, 2015, 209: 413–418

    Article  CAS  Google Scholar 

  44. Lee HI, Kim JH, Kim JM, Kim S, Park JN, Hwang JS, Yeon JW, Jung Y. J Nanosci Nanotech, 2010, 10: 217–221

    Article  CAS  Google Scholar 

  45. Li M, Liu H, Chen T, Hayat T, Alharbi NS, Chen C. J Mol Liquids, 2017, 236: 445–451

    Article  CAS  Google Scholar 

  46. Li M, Liu H, Chen T, Lin W. Appl Geochem, 2017, 84: 154–161

    Article  CAS  Google Scholar 

  47. Chen YG, Sun Z, Ye WM, Cui YJ. J Radioanal Nucl Chem, 2017, 311: 1839–1847

    Article  CAS  Google Scholar 

  48. Ezzat A, Mahmoud MR, Soliman MA, Saad EA, Kandil A. Radiochim Acta, 2017, 105: 205–213

    Article  CAS  Google Scholar 

  49. Yu S, Wang X, Yang S, Sheng G, Alsaedi A, Hayat T, Wang X. Sci China Chem, 2017, 60: 170–187

    Article  CAS  Google Scholar 

  50. Wang X, Yu S, Chen Z, Zhao Y, Jin J, Wang X. Sci China Chem, 2017, 60: 1149–1152

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2017YFA0207002), the National Natural Science Foundation of China (21577032), the Fundamental Research Funds for the Central Universities (2018ZD11, 2018MS114), the Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection and the Priority Academic Program Development of Jiangsu Higher Education Institutions. X. Wang acknowledged the CAS Interdisciplinary Innovation Team of Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangke Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, W., Wu, Y., Pang, H. et al. In-situ reduction synthesis of manganese dioxide@polypyrrole core/shell nanomaterial for highly efficient enrichment of U(VI) and Eu(III). Sci. China Chem. 61, 812–823 (2018). https://doi.org/10.1007/s11426-017-9225-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-017-9225-5

Keywords

Navigation