Skip to main content
Log in

Complexation of radionuclide 152+154Eu(III) with alumina-bound fulvic acid studied by batch and time-resolved laser fluorescence spectroscopy

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 21 May 2019

This article has been updated

Abstract

To contribute to the understanding of Eu(III) interaction preperties on hydrous alumina particles in the absence and presence of fulvic acid (FA), the complexation properties of Eu(III) with hydrous alumina, FA and FA-alumina hybrids are studied by batch and time-resolved laser fluorescence spectroscopy (TRLFS) techniques. The continuous increase in the fluorescence lifetime of Eu-alumina and Eu-FA with increasing pH indicates that the complexation is accompanied by decreasing number of hydration water in the first coordination sphere of Eu(III). Eu(III) is adsorbed onto alumina particles as outer-sphere surface complexes of ≡(Al−O)−Eu· (OH)· 7H2O and ≡(Al−O)−Eu· 6H2O at low pH values, and as inner-sphere surface complexes as ≡(Al−O)2−Eu+· 4H2O at high pH. In FA solution, Eu(III) forms complexes with FA as (COO)2Eu+(H2O) x and the hydration water number in the first coordination sphere decreases with pH increasing. The formation of ≡COO−Eu−(O−Al≡)· 4H2O is observed on FA-alumina hybrids, suggesting the formation of strong inner-sphere surface complexes in the presence of FA. The surface complexes are also characterized by their emission spectra [the ratio of emission intensities of 5 D 07 F 1 (λ=594 nm) and 5 D 07 F 2 (λ=619 nm) transitions] and their fluorescence lifetime. The findings is important to understand the contribution of FA in the complexation properties of Eu(III) on FA-alumina hybrids that the clarification of the environmental behavior of humic substances is necessary to understand fully the behavior of Eu(III), or its analogue trivalent lanthanide and actinide ions in natural environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 21 May 2019

    In the above referenced publication [1], the Figure 5 and data in Table 1 are correct, but we ignored to present the final pH values of the system, which is very important to understand the properties.

References

  1. Sun Y, Yang S, Chen Y, Ding C, Cheng W, Wang X. Environ Sci Technol, 2015, 49: 4255–4262

    Article  CAS  Google Scholar 

  2. Ding C, Cheng W, Sun Y, Wang X. Geochim Cosmochim Acta, 2015, 165: 86–107

    Article  CAS  Google Scholar 

  3. Stumpf T, Bauer A, Coppin F, Kim JI. Environ Sci Technol, 2001, 35: 3691–3694

    Article  CAS  Google Scholar 

  4. Wang X, Chen Z, Wang X. Sci China Chem, 2015, 58: 1766–1773

    Article  CAS  Google Scholar 

  5. Montavon G, Markai S, Andrés Y, Grambow B. Environ Sci Technol, 2002, 36: 3303–3309

    Article  CAS  Google Scholar 

  6. Wang X, Yang S, Shi W, Li J, Hayat T, Wang X. Environ Sci Technol, 2015, 49: 11721–11728

    Article  CAS  Google Scholar 

  7. Yu S, Wang X, Tan X, Wang X. Inorg Chem Front, 2015, 2: 593–612

    Article  CAS  Google Scholar 

  8. Sun Y, Shao D, Chen C, Yang S, Wang X. Environ Sci Technol, 2013, 47: 9904–9910

    Article  CAS  Google Scholar 

  9. Sun Y, Li J, Wang X. Geochim Cosmochim Acta, 2014, 140: 621–643

    Article  CAS  Google Scholar 

  10. Tan XL, Wang XK, Geckeis H, Rabung T. Environ Sci Technol, 2008, 42: 6532–6537

    Article  CAS  Google Scholar 

  11. Rabung T, Stumpf T, Geckeis H, Klenze R, Kim JI. Radiochimica Acta, 2009, 88: 711

    Google Scholar 

  12. Righetto L, Bidoglio G, Azimonti G, Bellobono IR. Environ Sci Technol, 1991, 25: 1913–1919

    Article  CAS  Google Scholar 

  13. Yang S, Sheng G, Montavon G, Guo Z, Tan X, Grambow B, Wang X. Geochim Cosmochim Acta, 2013, 121: 84–104

    Article  CAS  Google Scholar 

  14. Montavon G, Markai S, Andrés Y, Grambow B. Environ Sci Technol, 2002, 36: 3303–3309

    Article  CAS  Google Scholar 

  15. Ye Y, Qiao Y, Wang L, Liu F, Guo Z, Wu W, Zhang C. Radiochimica Acta, 2015, 104: 85–95

    Google Scholar 

  16. Moreau P, Colette-Maatouk S, Vitorge P, Gareil P, Reiller PE. Inorganica Chim Acta, 2015, 432: 81–88

    Article  CAS  Google Scholar 

  17. Wang X, Chen Z, Tan X, Hayat T, Ahmad B, Dai S, Wang X. Chem Eng J, 2016, 287: 313–320

    Article  CAS  Google Scholar 

  18. Kimura T, Choppin GR. J Alloys Compounds, 1994, 213-214: 313–317

    Article  Google Scholar 

  19. Kimura T, Choppin GR, Kato Y, Yoshida Z. Radiochimica Acta, 1996, 72: 61–64

    Article  CAS  Google Scholar 

  20. Horrocks WDW, Sudnick DR. J Am Chem Soc, 1979, 101: 334–340

    Article  CAS  Google Scholar 

  21. Tao ZY, Zhang J, Zhai JJ. Anal Chim Acta, 1999, 395: 199–203

    Article  CAS  Google Scholar 

  22. Lefèvre G, Duc M, Lepeut P, Caplain R, Fédoroff M. Langmuir, 2002, 18: 7530–7537

    Article  Google Scholar 

  23. Eng PJ. Science, 2000, 288: 1029–1033

    Article  CAS  Google Scholar 

  24. Chen Y, Zhang W, Yang S, Hobiny A, Alsaedi A, Wang X. Sci China Chem, 2016, 59: 412–419

    Article  CAS  Google Scholar 

  25. Wen T, Fan Q, Tan X, Chen Y, Chen C, Xu A, Wang X. Polym Chem, 2016, 7: 785–794

    Article  CAS  Google Scholar 

  26. Terashima M, Fukushima M, Tanaka S. Colloids Surfaces A-Physicochemical Eng Aspects, 2004, 247: 77–83

    Article  CAS  Google Scholar 

  27. Maurice PA, Namjesnik-Dejanovic K. Aggregate structures of sorbed humic substances observed in aqueous solution. Environ. Sci. Technol., 1999, 33: 1538–1541, DOI: 10.1021/es981113+

    CAS  Google Scholar 

  28. Takahashi Y, Kimura T, Minai Y. Geochim Cosmochim Acta, 2002, 66: 1–12

    Article  CAS  Google Scholar 

  29. Kim JI, Wimmer H, Klenze R. Radiochimica Acta, 1991, 54: 35–42

    CAS  Google Scholar 

  30. Naik H, Dange SP, Datta T. Radiochimica Acta, 1993, 62: 1–6

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports from the National Natural Science Foundation of China (21225730, 91326202 and 21577032), the Fundamental Research Funds for the Central Universities (JB2015001), Kunlun scholarship of Qinghai province, the priority Academic program development of Jiangsu Higher Education Institutions, and the Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Yu, S., Chen, Z. et al. Complexation of radionuclide 152+154Eu(III) with alumina-bound fulvic acid studied by batch and time-resolved laser fluorescence spectroscopy. Sci. China Chem. 60, 107–114 (2017). https://doi.org/10.1007/s11426-016-0163-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0163-6

Keywords

Navigation