Skip to main content
Log in

Preparation and properties of physically and chemically cross-linked hybrid hydrophobic association hydrogels with good mechanical strength

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

To correct the defects of hydrophobic association hydrogels (HA-gels), new physically and chemically cross-linked hybrid hydrophobic association hydrogels (hybrid HA-gels) were prepared by radical copolymerization of acrylamide (AM), octylphenol polyoxyethylene (n) acrylate (OPnAC, n stands for the number of ethoxy group, and is 10 and 21) and N,N′-methylenebisacrylamide (MBA). On the basis of the statistical molecular theory of rubber elastic, the Mooney-Rivlin model and using the tensile true stress (σ true) tested at room temperature, the number of network strands per unit volume (υ 0) and the number-average molar mass of a network strand (M c) were evaluated for hybrid HA-gels. For the hydrogels, the effect of the content of MBA and OP10AC on their tensile mechanical properties was studied by using υ 0 and M c; also, the effect of the compositions and temperature on their swelling behavior in distilled water was discussed in detail. In addition, hybrid HA-gels including a small quantity of MBA possessed the capabilities of secondary self-healing and remolding. In contrast with HA-gels prepared by the same compositions besides MBA, hybrid HA-gels showed good mechanical strength and long-term thermal stability in distilled water in the range of 25 to 80 °C. Furthermore, hybrid HA-gels also avoided the self-deswelling behavior of HA-gels. The results show that the application fields of HA-gels will be greatly broadened after introducing a chemical cross-linking network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hao JK, Weiss RA. Polymer, 2013 54 2174–2182

    Article  CAS  Google Scholar 

  2. Hao JK, Weiss RA. Macromolecules, 2011 44 9390–9398

    Article  CAS  Google Scholar 

  3. Brown HR. Macromolecules, 2007 40 3815–3818

    Article  CAS  Google Scholar 

  4. Kong HJ, Wong E, Mooney DJ. Macromolecules, 2003 36 4582–4588

    Article  CAS  Google Scholar 

  5. Yokoyama F, Masada I, Shimamura K, Ikawa T, Monobe K. Colloid Polym Sci, 1986 264 595–601

    Article  CAS  Google Scholar 

  6. Nam K, Watanabe JJ, Ishihara K. Polymer, 2005 46 4704–4713

    Article  CAS  Google Scholar 

  7. Zhao YB, Liu W, Yang XL, Xu HB. J Appl Polym Sci, 2008 110 2234–2242

    Article  CAS  Google Scholar 

  8. Jiang GQ, Liu C, Liu XL, Chen QR, Zhang GH, Yang M, Liu FQ. Polymer, 2010 51 1507–1515

    Article  CAS  Google Scholar 

  9. Yang M, Liu C, Li ZY, Gao G, Liu FQ. Macromolecules, 2010 43 10645–10651

    Article  CAS  Google Scholar 

  10. Abdurrahmanoglu S, Can V, Okay O. Polymer, 2009 50 5449–5455

    Article  CAS  Google Scholar 

  11. Jiang GQ, Liu C, Liu XL, Zhang GH, Yang M, Liu FQ. Macromol Mater Eng, 2009 294 815–820

    Article  CAS  Google Scholar 

  12. Li WB, An HY, Tan Y, Lu CG, Liu C. Soft Matter, 2012 8 5078–5086

    Article  CAS  Google Scholar 

  13. Tsitsilianisa C. Soft Matter, 2010 6 2372–2388

    Article  Google Scholar 

  14. Gaharwar AK, Dammu SA, Canter JM, Wu CJ, Schmidt G. Biomacromolecules, 2011 12 1641–1650

    Article  CAS  Google Scholar 

  15. Sun JY, Zhao XH, Illeperuma WRK, Chaudhuri O, Oh KH, Mooney DJ, Vlassak JJ, Suo ZG. Nature, 2012 489 133–136

    Article  CAS  Google Scholar 

  16. Liu C, Liu XL, Yu JF, Gao G, Liu FQ. J Appl Polym Sci, 2015. doi: 10.1002/APP.41222

    Google Scholar 

  17. Jiang GQ. J Macromol Sci, Part A: Pure Appl Chem, 2014 51 165–172

    Article  CAS  Google Scholar 

  18. Jiang GQ. J Macromol Sci, Part A: Pure Appl Chem, 2014 51 873–880

    Article  CAS  Google Scholar 

  19. Liu C, Yu JF, Jiang GQ, Liu XL, Li ZY, Gao G, Liu FQ. J Mater Sci, 2013 48 774–784

    Article  CAS  Google Scholar 

  20. Jiang GQ, Liu C, Liu XL, Zhang GH, Yang M, Chen QR, Liu FQ. J Macromol Sci, Part A: Pure Appl Chem, 2010 47 335–342

    Article  CAS  Google Scholar 

  21. Jiang GQ, Liu C, Liu XL, Zhang GH, Yang M, Chen QR, Liu FQ. J Macromol Sci, Part A: Pure Appl Chem, 2010 47 663–670

    Article  CAS  Google Scholar 

  22. Chen QR, Liu C, Jiang GQ, Liu XL, Yang M, Zhang D, Liu FQ. Acta Polym Sin, 2010 797–802

    Google Scholar 

  23. Jiang GQ, Liu FQ. Polym Mater Sci Eng, 2012 28 100–103

    CAS  Google Scholar 

  24. Abdurrahmanoglu S, Cilingir M, Okay O. Polymer, 2011 52 694–699

    Article  CAS  Google Scholar 

  25. Tuncaboylu DC, Sahin M, Argun A, Oppermann W, Okay O. Macromolecules, 2012 45 1991–2000

    Article  CAS  Google Scholar 

  26. Tuncaboylu DC, Argun A, Algi MP, Okay O. Polymer, 2013 54 6381–6388

    Article  CAS  Google Scholar 

  27. Tan M, Zhao TT, Huang H, Guo Y. Polym Chem-UK, 2013 4 5570–5576

    Article  CAS  Google Scholar 

  28. Xu K, An HY, Lu CG, Tan Y, Li PC, Wang PX. Polymer, 2013 54 5665–5672

    Article  CAS  Google Scholar 

  29. Li ZQ, Shen JF, Ma HW, Lu X, Shi M, Li N, Ye MX. Mat Sci Eng C-Mater, 2013 33 1951–1957

    Article  CAS  Google Scholar 

  30. Ma XM, Li YH, Wang WC, Ji Q, Xia YZ. Eur Polym J, 2013 49 389–396

    Article  CAS  Google Scholar 

  31. Lin ZH, Wu WH, Wang JQ, Jin X. React Funct Polym, 2007 67 789–797

    Article  CAS  Google Scholar 

  32. Haraguchi K, Farnworth R, Ohbayashi A, Takehisa T. Macromolecules, 2003 36 5732–5741

    Article  CAS  Google Scholar 

  33. Zhu MF, Liu Y, Sun B, Zhang W, Liu XL, Yu H, Zhang Y, Kuckling D, Adler HJ. Macromol Rapid Commun, 2006 27 1023–1028

    Article  CAS  Google Scholar 

  34. Fang DB, Guo RW, Ha RH. Acrylamide Polymers. Beijing: Chemical Industry Press, 2006. 16

    Google Scholar 

  35. Haraguchi K, Takehisa T, Fan S. Macromolecules, 2002 35 10162–10171

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiying Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, G., Huang, L., Li, B. et al. Preparation and properties of physically and chemically cross-linked hybrid hydrophobic association hydrogels with good mechanical strength. Sci. China Chem. 59, 282–292 (2016). https://doi.org/10.1007/s11426-015-5509-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5509-4

Keywords

Navigation