Skip to main content
Log in

Facile synthesis of gold nanoflowers as SERS substrates and their morphological transformation induced by iodide ions

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

We report a new strategy to prepare gold nanoflowers (AuNFs) using a two-step seed-mediated method. The as-prepared AuNFs were employed as surface-enhance Raman scattering (SERS) substrates, showing strong signal enhancement. We further found that iodide ions (I) could selectively induce the morphological transformation of AuNFs to spheres, resulting in a blue-shift of the localized surface plasmon resonance (LSPR) bands, a color change of the AuNFs solution from blue to red, and decreased SERS activity. This behavior allows the AuNFs to be used in the determination of I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lakowicz JR. Plasmonics, 2006, 1: 5–33

    Article  CAS  Google Scholar 

  2. Rycenga M, Cobley CM, Zeng J, Li W, Moran CH, Zhang Q, Qin D, Xia Y. Chem Rev, 2011, 111: 3669–3712

    Article  CAS  Google Scholar 

  3. Zou BZ, Liu Y, Wang J, Huang CZ. Sci Sin Chim, 2014, 44: 1641–1646

    Article  CAS  Google Scholar 

  4. Zhan L, Peng L, Huang CZ. Chin Sci Bull, 2014, 59: 964–970

    Article  CAS  Google Scholar 

  5. Long Y, Wang Y, Liu Y, Zeng Q, Li Y. Sci China Chem, 2015, 58: 666–672

    Article  CAS  Google Scholar 

  6. Guo J, Yang Y, Hu X, Li Y. Sci China Chem, 2015, 58: 885–891

    Article  CAS  Google Scholar 

  7. Yguerabide J, Yguerabide EE. Anal Biochem, 1998, 262: 137–156

    Article  CAS  Google Scholar 

  8. Ling J, Huang CZ, Li YF, Zhang L, Chen LQ, Zhen SJ. TrAC-Trend Anal Chem, 2009, 28: 447–453

    Article  CAS  Google Scholar 

  9. Ma J, Liu Y, Huang CZ. Sci Sin Chim, 2014, 44: 1647–1657

    Article  CAS  Google Scholar 

  10. Liu Y, Huang CZ. Chin Sci Bull, 2013, 58: 1969–1979

    Article  Google Scholar 

  11. Wang Y, Zhan L, Huang CZ. Anal Method, 2010, 2: 1982–1988

    Article  CAS  Google Scholar 

  12. Xu X, Qiao J, Qi L, Wang L, Zhang S. Sci China Chem, 2015, 58: 1065–1072

    Article  CAS  Google Scholar 

  13. Zhong X, Chai YQ, Yuan R. Talanta, 2014, 128: 9–14

    Article  CAS  Google Scholar 

  14. Kim F, Song JH, Yang P. J Am Chem Soc, 2002, 124: 14316–14317

    Article  CAS  Google Scholar 

  15. Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T. J Phys Chem B, 2005, 109: 13857–13870

    Article  CAS  Google Scholar 

  16. Zhang J, Langille MR, Mirkin CA. Nano Lett, 2011, 11: 2495–2498

    Article  CAS  Google Scholar 

  17. Pietrobon B, Mceachran M, Kitaev V. ACS Nano, 2009, 3: 21–26

    Article  CAS  Google Scholar 

  18. Khalavka Y, Becker J, Sönnichsen C. J Am Chem Soc, 2009, 131: 1871–1875

    Article  CAS  Google Scholar 

  19. Lu W, Wang H, Zhang J, Jiang L. Prog Chem, 2015, 27: 785–793

    Google Scholar 

  20. Niu Z, Liu J, Lee LA, Bruckman MA, Zhao D, Koley G, Wang Q. Nano Lett, 2007, 7: 3729–3733

    Article  CAS  Google Scholar 

  21. Zhang Y, Wang J, Yang P. Mater Res Bull, 2013, 48: 461–468

    Article  CAS  Google Scholar 

  22. Xue C, Millstone JE, Li S, Mirkin CA. Angew Chem Int Ed, 2007, 46: 8436–8439

    Article  CAS  Google Scholar 

  23. Liu A, Cheng Y, Tian F, Pan W, Huang S, Feng X, Ma H. J Dispersion Sci Tech, 2011, 32: 277–282

    Article  Google Scholar 

  24. Zhang J, Li W, Cheng Y, Zhang X, Huang S, Ma H. Mater Chem Phys, 2010, 119: 188–194

    Article  CAS  Google Scholar 

  25. Bordenave MD, Scarpettini AF, Roldán MV, Pellegri N, Bragas AV. Mater Chem Phys, 2013, 139: 100–106

    Article  CAS  Google Scholar 

  26. Chen S, Tang J, Kuang Y, Fu L, Ma F, Yang Y, Chen G, Long Y. Sensor Actuat B-Chem, 2015, 221: 1182–1187

    Article  CAS  Google Scholar 

  27. Lu L, Kobayashi A, Tawa K, Ozaki Y. Chem Mater, 2006, 18: 4894–4901

    Article  CAS  Google Scholar 

  28. Chen L, Ji F, Xu Y, He L, Mi Y, Bao F, Sun B, Zhang X, Zhang Q. Nano Lett, 2014, 14: 7201–7206

    Article  CAS  Google Scholar 

  29. Alex S, Tian K, Teng S, Siegel G, Tiwari A. J Crystal Growt, 2014, 406: 12–17

    Article  CAS  Google Scholar 

  30. Sun Y. Science, 2002, 298: 2176–2179

    Article  CAS  Google Scholar 

  31. Niu W, Zheng S, Wang D, Liu X, Li H, Han S, Chen J, Tang Z, Xu G. J Am Chem Soc, 2009, 131: 697–703

    Article  CAS  Google Scholar 

  32. Sau TK, Murphy CJ. J Am Chem Soc, 2004, 126: 8648–8649

    Article  CAS  Google Scholar 

  33. Chang YM, Lu IT, Chen CY, Hsieh YC, Wu PW. J Alloy Compd, 2014, 586: 507–511

    Article  CAS  Google Scholar 

  34. Fang J, Yi Y, Ding B, Song X. Appl Phys Lett, 2008, 92: 131115

    Article  Google Scholar 

  35. You H, Ji Y, Wang L, Yang S, Yang Z, Fang J, Song X, Ding B. J Mater Chem, 2012, 22: 1998–2006

    Article  CAS  Google Scholar 

  36. Song CY, Zhou N, Yang BY, Yang YJ, Wang LH. Nanoscale, 2015, 7: 17004–17011

    Article  CAS  Google Scholar 

  37. Li Q, Jiang Y, Han R, Zhong X, Liu S, Li ZY, Sha Y, Xu D. Small, 2013, 9: 927–932

    Article  CAS  Google Scholar 

  38. Jena BK, Raj CR. Chem Mater, 2008, 20: 3546–3548

    Article  CAS  Google Scholar 

  39. Jiang Y, Wu XJ, Li Q, Li J, Xu D. Nanotechnology, 2011, 22: 385601

    Article  Google Scholar 

  40. Xu D, Gu J, Wang W, Yu X, Xi K, Jia X. Nanotechnology, 2010, 21: 375101

    Article  Google Scholar 

  41. Guo S, Wang E. Colloid Surface A, 2008, 317: 673–678

    Article  CAS  Google Scholar 

  42. Kumagai K, Ishida A. Chem Lett, 2012, 41: 580–582

    Article  CAS  Google Scholar 

  43. Jia W, Li J, Lin G, Jiang L. Cryst Growth Des, 2011, 11: 3822–3827

    Article  CAS  Google Scholar 

  44. Boca S, Rugina D, Pintea A, Barbu-tudoran L, Astilean S. Nanotechnology, 2011, 22: 055702

    Article  Google Scholar 

  45. Osawa M, Matsuda N, Yoshii K, Uchida I. J Phys Chem, 1994, 98: 12702–12707

    Article  CAS  Google Scholar 

  46. Sun L, Song Y, Wang L, Guo C, Sun Y, Liu Z, Li Z. J Phys Chem C, 2008, 112: 1415–1422

    Article  CAS  Google Scholar 

  47. Watanabe H, Hayazawa N, Inouye Y, Kawata S. J Phys Chem B, 2005, 109: 5012–5020

    Article  CAS  Google Scholar 

  48. Bai X, Li X, Zheng L. Langmuir, 2010, 26: 12209–12214

    Article  CAS  Google Scholar 

  49. Cheng W, Dong S, Wang E. Angew Chem Int Ed, 2003, 42: 449–452

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengzhi Huang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhen, S., Wu, T., Huang, X. et al. Facile synthesis of gold nanoflowers as SERS substrates and their morphological transformation induced by iodide ions. Sci. China Chem. 59, 1045–1050 (2016). https://doi.org/10.1007/s11426-015-0482-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-0482-5

Keywords

Navigation