Skip to main content
Log in

Disposable paper-based bipolar electrode array for multiplexed electrochemiluminescence detection of pathogenic DNAs

  • Articles
  • Special Topic Analytical Sciences at the Nano-Bio Interface
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A novel disposable paper-based bipolar electrode (BPE) array is fabricated for multiplexed electrochemiluminescence (ECL) detection of pathogenic DNAs. This proposed BPE array device consists of 15 units, each consisting of six sensing cells and two reporting cells patterned using hydrophobic wax. A hairpin structure DNA assembled on the cathodes of BPEs hybridizes with Pt nanoparticles (NPs) labeled probe DNA in the presence of complementary target DNA. The introduction of Pt NPs catalyzes the reduction of dissolved O2 at cathodes and induces an enhanced ECL signal from Ru(bpy)3 2+/tripropylamine (TPrA) at the anodes of BPEs. The dissolved O2 lost in reduction reaction could be promptly replenished due to the relatively large contact area of the paper-based cells with air, which ensures the stability of ECL signal. This obtained paper-based BPE array sensor showed excellent performances for the multiplexed analysis of the syphilis (Treponema pallidum) gene, the immunodeficiency virus gene (HIV) and hepatitis B virus gene (HBV).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bruzewicz DA, Reches M, Whitesides GM. Low-cost printing poly(dimethylsiloxane) barriers to define microchannels in paper. Anal Chem, 2008, 80: 3387–3392

    Article  CAS  Google Scholar 

  2. Martinez AW, Phillips ST, Carrilho E, Thomas SW, Sindi H, Whitesides GM. Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, offsite diagnosis. Anal Chem, 2008, 80: 3699–3707

    Article  CAS  Google Scholar 

  3. Martinez AW, Phillips ST, Wiley BJ, Gupta M, Whitesides GM. FLASH: A rapid method for prototyping paper-based microfluidic devices. Lab Chip, 2008, 8: 2146–2150

    Article  CAS  Google Scholar 

  4. Costa MN, Veigas B, Jacob JM, Santos DS, Gomes J, Baptista PV, Martins R, Inacio J, Fortunato E. A low cost, safe, disposable, rapid and self-sustainable paper-based platform for diagnostic testing: lab-on-paper. Nanotechnology, 2014, 25: 094006

    Article  CAS  Google Scholar 

  5. Cui J, Lisak G, Strzalkowska S, Bobacka J. Potentiometric sensing utilizing paper-based microfluidic sampling. Analyst, 2014, 139: 2133–2136

    Article  CAS  Google Scholar 

  6. Demirel G, Babur E. Vapor-phase deposition of polymers as a simple and versatile technique to generate paper-based microfluidic platform for bioassay applications. Analyst, 2014, 139: 2326–2331

    Article  CAS  Google Scholar 

  7. Evans E, Moreira Gabriel EF, Tomazelli Coltro WK, Garcia CD. Rational selection of substrates to improve color intensity and uniformity on microfluidic paper-based analytical devices. Analyst, 2014, 139: 2127–2132

    Article  CAS  Google Scholar 

  8. Liu W, Yang H, Ding Y, Ge S, Yu J, Yan M, Song X. Paper-based colorimetric immunosensor for visual detection of carcinoembryonic antigen based on the high peroxidase-like catalytic performance of ZnFe2O4-multiwalled carbon nanotubes. Analyst, 2014, 139: 251–258

    Article  CAS  Google Scholar 

  9. Noor MO, Krull UJ. Paper-based solid-phase multiplexed nucleic acid hybridization assay with tunable dynamic range using immobilized quantum dots as donors in fluorescence resonance energy transfer. Anal Chem, 2013, 85: 7502–7511

    Article  CAS  Google Scholar 

  10. Noor MO, Shahmuradyan A, Krull UJ. Paper-based solid-phase nucleic acid hybridization assay using immobilized quantum dots as donors in fluorescence resonance energy transfer. Anal Chem, 2013, 85: 1860–1867

    Article  CAS  Google Scholar 

  11. Ge L, Wang P, Ge S, Li N, Yu J, Yan M, Huang J. Photoelectrochemical lab-on-paper device based on an integrated paper supercapacitor and internal light source. Anal Chem, 2013, 85: 3961–3970

    Article  CAS  Google Scholar 

  12. Wang P, Sun G, Ge L, Ge S, Yu J, Yan M. Photoelectrochemical lab-on-paper device based on molecularly imprinted polymer and porous Au-paper electrode. Analyst, 2013, 138: 4802–4811

    Article  CAS  Google Scholar 

  13. Wang S, Ge L, Song X, Yu J, Ge S, Huang J, Zeng F. Paper-based chemiluminescence ELISA: lab-on-paper based on chitosan modified paper device and wax-screen-printing. Biosens Bioelectron, 2012, 31: 212–218

    Article  Google Scholar 

  14. Shi CG, Shan X, Pan ZQ, Xu JJ, Lu C, Bao N, Gu HY. Quantum dot (QD)-modified carbon tape electrodes for reproducible electrochemilumine (ECL) emission on a paper-based platform. Anal Chem, 2012,84: 3033–3038

    Article  CAS  Google Scholar 

  15. Feng QM, Zhang Q, Shi CG, Xu JJ, Bao N., Gu HY. Using nanostructured conductive carbon tape modified with bismuth as the disposable working electrode for stripping analysis in paper-based analytical devices. Talanta, 2013, 115: 235–240

    Article  CAS  Google Scholar 

  16. Xu S, Liu Y, Wang T, Li J. Positive potential operation of a cathodic electrogenerated chemiluminescence immunosensor based on luminol and graphene for cancer biomarker detection. Anal Chem, 2011, 83: 3817–3823

    Article  CAS  Google Scholar 

  17. Zhou H, Liu J, Xu JJ, Chen HY. Highly Sensitive electrochemiluminescence detection of single-nucleotide polymorphisms based on isothermal cycle-assisted triple-stemprobe with dual-nanoparticle label. Anal Chem, 2011, 83: 8320–8328

    Article  CAS  Google Scholar 

  18. Wu Y, Xue P, Kang Y, Hui KM. Paper-based microfluidic electrochemical immunodevice integrated with nanobioprobes onto graphene film for ultrasensitive multiplexed detection of cancer biomarkers. Anal Chem, 2013, 85: 8661–8668

    Article  CAS  Google Scholar 

  19. Mu X, Zhang L, Chang S, Cui W, Zheng Z. Multiplex microfluidic paper-based immunoassay for the diagnosis of hepatitis C virus infection. Anal Chem, 2014, 86: 5338–5344

    Article  CAS  Google Scholar 

  20. Ge S, Ge L, Yan M, Song X, Yu J, Huang J. A disposable paperbased electrochemical sensor with an addressable electrode array for cancer screening. Chem Commun, 2012, 48: 9397–9399

    Article  CAS  Google Scholar 

  21. Zhang JD, Xiong M, Hao N, Xu JJ, Chen HY. A universal microarray platform: towards high-throughput electrochemical detection. Electrochem Commun, 2014, 47: 54–57

    Article  CAS  Google Scholar 

  22. Zhang JD, Yu T, Li JY, Xu JJ, Chen HY. An ITO bipolar array for electrochemiluminescence imaging of H2O2. Electrochem Commun, 2014, 49: 75–78

    Article  CAS  Google Scholar 

  23. Dong XY, Zhao WW, Sun GB, Xu JJ, Chen HY. An electrochemical DNA biosensor based on gold nanofilm and stable Y junction structure. Acta Chim Simica, 2012, 70: 1457–1463

    Article  CAS  Google Scholar 

  24. Dong XY, Zhao WW, Xu JJ, Chen HY. Magnetic particles and cadmium sulfide nanoparticles tagging for signal-amplifying detection of nucleic acids. Sci China Chem, 2011, 54: 1304–1310

    Article  CAS  Google Scholar 

  25. Kesselring D, Maurer K, Moeller KD. Microelectrode arrays and ceric ammonium nitrate: a simple strategy for developing new siteselective synthetic methods. J Am Chem Soc, 2008, 130: 11290–11291

    Article  CAS  Google Scholar 

  26. Chow KF, Mavre F, Crooks RM, Wireless electrochemical DNA microarray sensor. J Am Chem Soc, 2008, 130: 7544–7545

    Article  CAS  Google Scholar 

  27. Shi HW, Wu MS, Du Y, Xu JJ, Chen HY. Electrochemiluminescence aptasensor based on bipolar electrode for detection of adenosine in cancer cells. Biosens Bioelectron, 2014, 55: 459–463

    Article  CAS  Google Scholar 

  28. Wu MS, Qian GS, Xu JJ, Chen HY. Sensitive electrochemiluminescence detection of c-myc mRNA in breast cancer cells on a wireless bipolar electrode. Anal Chem, 2012, 84: 5407–5414

    Article  CAS  Google Scholar 

  29. Wu MS, Xu BY, Shi HW, Xu JJ, Chen HY. Electrochemiluminescence analysis of folate receptors on cell membrane with on-chip bipolar electrode. Lab Chip, 2001, 11: 2720–2724

    Article  Google Scholar 

  30. Wu MS, Yuan DJ, Xu JJ, Chen HY. Sensitive electrochemiluminescence biosensor based on Au-ITO hybrid bipolar electrode amplication system for cell surface protein detection. Anal Chem, 2013, 85: 11960–11965

    Article  CAS  Google Scholar 

  31. Wu MS, Yuan DJ, Xu JJ, Chen HY. Electrochemiluminescence on bipolar electrodes for visual bioanalysis. Chem Sci, 2013, 4: 1182–1188

    Article  CAS  Google Scholar 

  32. Chang BY, Chow KF, Crooks JA, Mavre F, Crooks RM. Twochannel microelectrochemical bipolar electrode sensor array. Analyst, 2012, 137: 2827–2833

    Article  CAS  Google Scholar 

  33. Knust KN, Sheridan E, Anand RK, Crooks RM. Dual-channel bipolar electrode focusing: simultaneous separation and enrichment of both anions and cations. Lab Chip, 2012, 12: 4107–4114

    Article  CAS  Google Scholar 

  34. Zhang X, Chen C, Li J, Zhang L, Wang E. New insight into a microfluidic-based bipolar system for an electrochemiluminescence sensing platform. Anal Chem, 2013, 85: 5335–5339

    Article  CAS  Google Scholar 

  35. Feng QM, Pan JB, Zhang HR, Xu JJ, Chen HY. Disposable paper-based bipolar electrode for sensitive electrochemiluminescence detection of a cancer biomarker. Chem Commun, 2014, 50: 10949–10951

    Article  CAS  Google Scholar 

  36. Liu X, Wang F, Aizen R, Yehezkeli O, Willner I. Graphene oxide/ nucleic-acid-stabilized silver nanoclusters: functional hybrid materials for optical aptamer sensing and multiplexed nanlysis of pathogenic DNAs. J Am Chem Soc, 2013, 135: 11832–11839

    Article  CAS  Google Scholar 

  37. Zhang HR, Xu JJ, Chen HY. Electrochemiluminescence ratiometry: a new approach to DNA biosensing. Anal Chem, 2013, 85: 5321–5325

    Article  CAS  Google Scholar 

  38. Mavre F, Anand RK, Laws DR, Chow KF, Chang BY, Crooks JA, Crooks RM. Bipolar electrodes: a useful tool for concentration, separation, and detection of analytes in microelectrochemical systems. Anal Chem, 2010, 82: 8766–8774

    Article  CAS  Google Scholar 

  39. Zhan W, Alvarez J, Crooks RM. Electrochemical sensing in microfludic systems using electrogenerated chemiluminescence as a photonic reporter of redox reactions. J Am Chem Soc, 2002, 124: 13265–13270

    Article  CAS  Google Scholar 

  40. Miao WJ, Choi JP, Bard AJ. Electrogenerated chemiluminescence 69: the tris (2,2'-bipyridine) ruthenium(II), (Ru(bpy)(3)(2+))/tri-n-propylamine (TPrA) system revisited - A new route involving TPrA(center dot+) cation radicals. J Am Chem Soc, 2002, 124: 14478–14485

    Article  CAS  Google Scholar 

  41. Chen X, Hong CY, Lin YH, Chen JH, Chen GN, Yang HH. Enzymefree and label-free ultrasensitive electrochemical detection of human immunodeficiency virus DNA in biological samples based on long-range self-assembled DNA nanostructures. Anal Chem, 2012, 84: 8277–8283

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingjuan Xu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Q., Chen, H. & Xu, J. Disposable paper-based bipolar electrode array for multiplexed electrochemiluminescence detection of pathogenic DNAs. Sci. China Chem. 58, 810–818 (2015). https://doi.org/10.1007/s11426-014-5295-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5295-4

Keywords

Navigation