Skip to main content
Log in

Green synthesis of fluorescent carbon quantum dots and carbon spheres from pericarp

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

An economical idea was developed to synthesize fluorescent carbon quantum dots (CQDs) directly from the refluxing extraction of orange pericarp via a hydrothermal technique. Hydrothermal temperatures and times were adjusted to control the particle sizes and the quantum yields of the obtained CQDs. The as-prepared carbon quantum dots showed narrow particle size distribution, good water solubility, and acceptable fluorescence lifetimes. Due to their high stability, these obtained carbon quantum dots have great application potential in nano-biotechnology. Furthermore, carbon spheres with uniform morphology and size can be easily obtained as the reaction byproducts of this green synthesis process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mao Y, Duan H, Xu B, Zhang L, Hu YS, Zhao CC, Wang ZX, Chen LQ, Yang YS. Lithium storage in nitrogen-rich mesoporous carbon materials. Energy Environ Sci, 2012, 5: 7950–7955

    Article  CAS  Google Scholar 

  2. Qie L, Chen WM, Wang ZH, Shao QG, Li X, Yuan LX, Hu XL, Zhang WX, Huang YH. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater, 2012, 24: 2047–2050

    Article  Google Scholar 

  3. Reddy ALM, Srivastava A, Gowda SR, Gullapalli H, Dubey M, Ajayan PM. Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano, 2010, 4: 6337–6342

    Article  CAS  Google Scholar 

  4. Nozik AJ, Beard MC, Luther JM, Law M, Ellingson RJ, Johnson JC. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem Rev, 2010, 110: 6873–6890

    Article  CAS  Google Scholar 

  5. Cretu O, Botello-Mendez AR, Janowska I, Pham-Huu C, Charlier JC, Banhart F. Electrical transport measured in atomic carbon chains. Nano Lett, 2013, 13: 3487–3493

    Article  CAS  Google Scholar 

  6. Xu XY, Ray R, Gu YL. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc, 2004, 126: 12736–12737

    Article  CAS  Google Scholar 

  7. Wu ZL, Zhang P, Gao MX, Liu CF, Wang W, Leng F, Huang CZ. One-pot hydrothermal synthesis of highly luminescent nitrogendoped amphoteric carbon dots for bioimaging from Bombyx mori silk-natural proteins. J Mater Chem B, 2013, 1: 2868–2873

    Article  CAS  Google Scholar 

  8. Sun YP, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang HF, Luo PG, Yang H, Kose ME, Chen BL, Veca LM, Xie SY. Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc, 2006, 128: 7756–7757

    Article  CAS  Google Scholar 

  9. Cao L, Wang X, Meziani MJ, Lu FS, Wang HF, Luo PG, Lin Y, Harruff BA, Veca LM, Murray D, Xie SY, Sun YP. Carbon dots for multiphoton bioimaging. J Am Chem Soc, 2007, 129: 11318–11319

    Article  CAS  Google Scholar 

  10. Li HT, He XD, Kang ZH, Huang H, Liu Y, Liu JL, Lian SY, Tsang CHA, Yang XB, Lee ST. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew Chem Int Ed, 2010, 49: 4430–4434

    Article  CAS  Google Scholar 

  11. Li HT, Liu RH, Lian SY, Liu Y, Huang H, Kang ZH. Near-infrared light controlled photocatalytic activity of carbon quantum dots for highly selective oxidation reaction. Nanoscale, 2013, 5: 3289–3297

    Article  CAS  Google Scholar 

  12. Tang D, Zhang HC, Huang H, Liu RH, Han YZ, Liu Y, Tong CY, Kang ZH. Carbon quantum dots enhance the photocatalytic performance of BiVO4 with different exposed facets. Dalton Trans, 2013, 42: 6285–6289

    Article  CAS  Google Scholar 

  13. Raveendran P, Fu J, Wallen SL. Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc, 2003, 125: 13940–13941

    Article  CAS  Google Scholar 

  14. Lu QY, Gao F, Komarneni S. A green chemical approach to the synthesis of tellurium nanowires. Langmuir, 2005, 21: 6002–6005

    Article  CAS  Google Scholar 

  15. Venkataramanan NS, Matsui K, Kawanami H, Ikushima Y. Green synthesis of titania nanowire composites on natural cellulose fibers. Green Chem, 2007, 9: 18–19

    Article  CAS  Google Scholar 

  16. Baruwati B, Polshettiwar V, Varma RS. Glutathione promoted expeditious green synthesis of silver nanoparticles in water using microwaves. Green Chem, 2009, 11: 926–930

    Article  CAS  Google Scholar 

  17. Xie JP, Lee JY, Wang DIC, Ting YP. Silver nanoplates: from biological to biomimetic synthesis. ACS Nano, 2007, 1: 429–439

    Article  CAS  Google Scholar 

  18. Kumar A, Vemula PK, Ajayan PM, John G. Silver-nanoparticleembedded antimicrobial paints based on vegetable oil. Nat Mater, 2008, 7: 236–241

    Article  CAS  Google Scholar 

  19. Kemp MM, Kumar A, Clement D, Ajayan P, Mousa S, Linhardt RJ. Hyaluronan- and heparin-reduced silver nanoparticles with antimicrobial properties. Nanomed, 2009, 4: 421–429

    Article  CAS  Google Scholar 

  20. Zheng LY, Chi YW, Dong YQ, Lin JP, Wang BB. Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. J Am Chem Soc, 2009, 131: 4564–4565

    Article  CAS  Google Scholar 

  21. Liu RL, Wu DQ, Liu SH, Loynov K, Knoll W, Li Q. An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angew Chem Int Ed, 2009, 48: 4598–4601

    Article  Google Scholar 

  22. Peng J, Gao W, Gupta BK. Graphene quantum dots derived from carbon fibers. Nano Lett, 2012, 12: 844–849

    Article  CAS  Google Scholar 

  23. Sun YP, Zhou B, Lin Y, Wang W. Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc, 2006, 128: 7756–7757

    Article  CAS  Google Scholar 

  24. Yang YH, Cui JH, Zheng MT. One-step synthesis of aminofunctionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan. Chem Commun, 2012, 48: 380–382

    Article  CAS  Google Scholar 

  25. Tang LB, Ji RB, Cao XK. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano, 2012, 6: 5102–5110

    Article  CAS  Google Scholar 

  26. Kwon W, Rhee SW. Facile synthesis of graphitic carbon quantum dots with size tunability and uniformity using reverse micelles. Chem Commun, 2012, 48: 5256–5258

    Article  CAS  Google Scholar 

  27. Wei JM, Shen JM, Zhang X, Guo SK, Pan JQ, Hou XG, Zhang HB, Wang L, Feng BX. Simple one-step synthesis of water-soluble fluorescent carbon dots derived from paper ash. RSC Adv, 2013, 3: 13119–13122

    Article  CAS  Google Scholar 

  28. Sahu S, Behera B, Maiti TK, Mohapatra S. Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chem Commun, 2012, 48: 8835–8837

    Article  CAS  Google Scholar 

  29. De B, Karak N. A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice. RSC Adv, 2013, 3: 8286–8290

    Article  CAS  Google Scholar 

  30. Lu WB, Qin XY, Chang GH, Zhang YW, Luo YL, Asiri AM, Al- Youbi AO, Sun SP. Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(II) ions. Anal Chem, 2012, 84: 5351–5357

    Article  CAS  Google Scholar 

  31. Zhuang ZB, Peng Q, Li YD. Controlled synthesis of semiconductor nanostructures in the liquid phase. Chem Soc Rev, 2011, 40: 5492–5513

    Article  CAS  Google Scholar 

  32. Lakowicz JR. Principles of Fluorescence Spectroscopy. 2nd Ed. New York: Kluwer Academic/Plenum Publishers, 1999

    Book  Google Scholar 

  33. Zhu H, Wang XL, Li YL, Wang ZJ, Yang F, Yang XL. Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem Commun, 2009: 5118–5120

    Google Scholar 

  34. Zhu CZ, Zhai JF, Dong, SJ. Bifunctional fluorescent carbon nanodots: green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction. Chem Commun, 2012, 48: 9367–9369

    Article  CAS  Google Scholar 

  35. Liu HP, Ye T, Mao CD. Fluorescent carbon nanoparticles derived from candle soot. Angew Chem Int Ed, 2007, 46: 6473–6475

    Article  CAS  Google Scholar 

  36. Zhao QL, Zhang ZL, Huang BH, Peng J, Zhang M, Pang DW. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem Commun, 2008, 5116–5118

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Gao or Qingyi Lu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, W., Xu, X., Hao, H. et al. Green synthesis of fluorescent carbon quantum dots and carbon spheres from pericarp. Sci. China Chem. 58, 863–870 (2015). https://doi.org/10.1007/s11426-014-5256-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5256-y

Keywords

Navigation