Skip to main content
Log in

Promotional effect of cerium on nickel-containing mesoporous silica for carbon dioxide reforming of methane

  • Articles
  • Special Issue In honor of the 100th birthday of Prof. Khi-Rui Tsai
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A series of Ce-promoted 6.7% Ni-containing mesoporous silica (Ce-Ni-SiO2) with varying Ce content (0.5%–4.8%) was prepared using the evaporation-induced self-assembly method. The characterization results showed that Ce and Ni species were homogeneously incorporated into the mesoporous silica matrix. The catalytic properties of these samples in the dry reforming of methane reaction revealed that the catalysts (e.g., 1.2% Ce-Ni-SiO2) containing highly dispersed small Ni particles exhibited excellent catalytic activity and long-term stability, which is attributed to the anchoring effect of the Ce and its ability to increase surface oxygen species concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rostrup-Nielsen JR. New aspects of syngas production and use. Catal Today, 2000, 63: 159–164

    Article  CAS  Google Scholar 

  2. Papadopoulou C, Matralis H, Verykios X. Utilization of biogas as a renewable carbon source: dry reforming of methane. In: Guczi L, Erdôhelyi A, Eds. Catalysis for Alternative Energy Generation. New York: Springer, 2012. 57–127

    Chapter  Google Scholar 

  3. Pakhare D, Spivey J. A review of dry (CO2) reforming of methane over noble metal catalysts. Chem Soc Rev, 2014, 43: 7813–7837

    Article  CAS  Google Scholar 

  4. Juan-Juan J, Román-Martínez MC, Illán-Gómez MJ. Effect of potassium content in the activity of K-promoted Ni/Al2O3 catalysts for the dry reforming of methane. Appl Catal A, 2006, 301: 9–15

    Article  CAS  Google Scholar 

  5. Choudhary VR, Uphade BS, Mamman AS. Large enhancement in methane-to-syngas conversion activity of supported Ni catalysts due to precoating of catalyst supports with MgO, CaO or rare-earth oxide. Catal Lett, 1995, 32: 387–390

    Article  CAS  Google Scholar 

  6. Monroy TG, Abella LC, Gallardo SM, Hinode H. ZrO2-promoted Ni/MgO catalyst for methane dry reforming. Mater Sci Eng A, 2012, 2: 544–549

    CAS  Google Scholar 

  7. García-Diéguez M, Pieta IS, Herrera MC, Larrubia MA, Alemany LJ. Nanostructured Pt- and Ni-based catalysts for CO2-reforming of methane. J Catal, 2010, 270: 136–145

    Article  Google Scholar 

  8. Zhang JG, Wang H, Dalai AK. Development of stable bimetallic catalysts for carbon dioxide reforming of methane. J Catal, 2007, 249: 300–310

    Article  CAS  Google Scholar 

  9. Zhang K, Zhou GD, Li J, Cheng TX. The electronic effects of Pr on La1−x PrxNiAl11O19 for CO2 reforming of methane. Catal Commun, 2009, 10: 1816–1820

    Article  CAS  Google Scholar 

  10. Ocsachoque M, Bengoa J, Gazzoli D, González MG. Role of CeO2 in Rh/a-Al2O3 catalysts for CO2 reforming of methane. Catal Lett, 2011, 141: 1643–1650

    Article  CAS  Google Scholar 

  11. Zhan WC, Guo Y, Gong XQ, Guo YL, Wang YQ, Lu GZ. Surface oxygen activation on CeO2 and its catalytic performances for oxidation reactions. Sci China Chem, 2012, 42: 1–13

    Article  Google Scholar 

  12. Ocsachoque M, Pompeo F, Gonzalez G. Rh-Ni/CeO2-Al2O3 catalysts for methane dry reforming. Catal Today, 2011, 172: 226–231

    Article  CAS  Google Scholar 

  13. Wang N, Chu W, Zhang T, Zhao XS. Synthesis, characterization and catalytic performances of Ce-SBA-15 supported nickel catalysts for methane dry reforming to hydrogen and syngas. Int J Hydrogen Energ, 2012, 37: 19–30

    Article  Google Scholar 

  14. Damyanova S, Pawelec B, Arishtirova K, Huerta MVM, Fierro JLG. The effect of CeO2 on the surface and catalytic properties of Pt/CeO2-ZrO2 catalysts for methane dry reforming. Appl Catal B, 2009, 89: 149–159

    Article  CAS  Google Scholar 

  15. Nandini A, Pant KK, Dhingra SC. K-, CeO2-, and Mn-promoted Ni/Al2O3 catalysts for stable CO2 reforming of methane. Appl Catal A, 2005, 290: 166–174

    Article  CAS  Google Scholar 

  16. Daza CE, Cabrera CR, Moreno S, Molina R. Syngas production from CO2 reforming of methane using Ce-doped Ni-catalysts obtained from hydrotalcites by reconstruction method. Appl Catal A, 2010, 378: 125–133

    Article  CAS  Google Scholar 

  17. Daza CE, Kiennemann A, Moreno S, Molina R. Dry reforming of methane using Ni-Ce catalysts supported on a modified mineral clay. Appl Catal A, 2009, 364: 65–74

    Article  CAS  Google Scholar 

  18. Pompeo F, Gazzoli D, Nichio NN. Stability improvements of Ni/α-Al2O3 catalysts to obtain hydrogen from methane reforming. Int J Hydrogen Energ, 2009, 34: 2260–2268

    Article  CAS  Google Scholar 

  19. Xu GL, Shi KY, Gao Y, Xu HY, Wei YD. Studies of reforming natural gas with carbon dioxide to produce synthesis gas: X. The role of CeO2 and MgO promoters. J Mol Catal A, 1999, 147: 47–54

    Article  CAS  Google Scholar 

  20. Cai WJ, Ye L, Zhang L, Ren YH, Yue B, Chen XY, He HY. Highly dispersed nickel-containing mesoporous silica with superior stability in carbon dioxide reforming of methane: the effect of anchoring. Materials, 2014, 7: 2340–2355

    Article  CAS  Google Scholar 

  21. Liu DP, Quek XY, Cheo WNE, Lau R, Borgna A, Yang YH. MCM-41 supported nickel-based bimetallic catalysts with superior stability during carbon dioxide reforming of methane: effect of strong metal-support interaction. J Catal, 2009, 266: 380–390

    Article  CAS  Google Scholar 

  22. Ikuhara YH, Saito T, Takahashi S, Sasaki Y, Hirayama T. Synthesis and microstructural analysis of homogeneously dispersed nickel nanoparticles in amorphous silica. J Am Ceram Soc, 2012, 95: 524–529

    Article  CAS  Google Scholar 

  23. Yang XL, Dai WL, Chen H, Xu JH, Cao Y, Li HX, Fan KN. Novel tungsten-containing mesoporous HMS material: its synthesis, characterization and catalytic application in the selective oxidation of cyclopentene to glutaraldehyde by aqueous H2O2. Appl Catal A, 2005, 283: 1–8

    Article  CAS  Google Scholar 

  24. González Vargas OA, de los Reyes Heredia JA, Montesinos Castellanos A, Chen LF, Wang JA. Cerium incorporating into MCM-41 mesoporous materials for CO oxidation. Mater Chem Phys, 2013, 139: 125–133

    Article  Google Scholar 

  25. Wang YZ, Li FM, Cheng HM, Fan Ly, Zhao YX. A comparative study on the catalytic properties of high Ni-loading Ni/SiO2 and low Ni-loading Ni-Ce/SiO2 for CO methanation. J Fuel Chem Technol, 2013, 41: 972–977

    Article  CAS  Google Scholar 

  26. Shao YF, Wang LZ, Zhang JL, Anpo M. Synthesis of hydrothermally stable and long-range ordered Ce-MCM-48 and Fe-MCM-48 materials. J Phys Chem B, 2005, 109: 20835–20841

    Article  CAS  Google Scholar 

  27. Laha SC, Mukherjee P, Sainkar SR, Kumar R. Cerium containing MCM-41-type mesoporous materials and their acidic and redox catalytic properties. J Catal, 2002, 207: 213–223

    Article  CAS  Google Scholar 

  28. Dai QG, Wang XY, Chen GP, Zheng Y, Lu GZ. Direct synthesis of cerium(III)-incorporated SBA-15 mesoporous molecular sieves by two-step synthesis method. Micropor Mesopor Mat, 2007, 100: 268–275

    Article  CAS  Google Scholar 

  29. Moroney LM, Smart RSC, Roberts MW. Studies of the thermal decomposition of β-NiO(OH) and nickel peroxide by X-ray photoelectron spectroscopy. J Chem Soc, Faraday Trans 1, 1983, 79: 1769–1778

    Article  CAS  Google Scholar 

  30. Liu DP, Lau R, Borgna A, Yang YH. Carbon dioxide reforming of methane to synthesis gas over Ni-MCM-41 catalysts. Appl Catal A, 2009, 358: 110–118

    Article  CAS  Google Scholar 

  31. Seok SH, Han SH, Lee JS. The role of MnO in Ni/MnO-Al2O3 catalysts for carbon dioxide reforming of methane. Appl Catal A, 2001, 215: 31–38

    Article  CAS  Google Scholar 

  32. Ciuparu D, Haider P, Fernandez-Garcia M, Chen Y, Lim S, Haller GL, Pfefferle L. X-ray absorption spectroscopic investigation of partially reduced cobalt species in Co-MCM-41 catalysts during synthesis of single-wall carbon nanotubes. J Phys Chem B, 2005, 109: 16332–16339

    Article  CAS  Google Scholar 

  33. Lim SY, Wang C, Yang YH, Ciuparu D, Pfefferle L, Haller GL. Evidence for anchoring and partial occlusion of metallic clusters on the pore walls of MCM-41 and effect on the stability of the metallic clusters. Catal Today, 2007, 123: 122–132

    Article  CAS  Google Scholar 

  34. Bonneviot L, Che M, Olivier D, Martin GA, Freund E. Electron-microscopy and magnetic studies of the interaction between nickel and silica-considerations on possible anchoring sites. J Phys Chem, 1986, 90: 2112–2117

    Article  CAS  Google Scholar 

  35. Utsumi S, Miyawaki J, Tanaka H, Hattori Y, Itoi T, Ichikuni N, Kanoh H, Yudasaka M, Iijima S, Kaneko K. Opening mechanism of internal nanoporosity of single-wall carbon nanohorn. J Phys Chem B, 2005, 109: 14319–14324

    Article  CAS  Google Scholar 

  36. Xu S, Yan XB, Wang XL. Catalytic performances of NiO-CeO2 for the reforming of methane with CO2 and O2. Fuel, 2006, 85: 2243–2247

    Article  CAS  Google Scholar 

  37. Kim DK, Stöwe K, Müller F, Maier WF. Mechanistic study of the unusual catalytic properties of a new NiCe mixed oxide for the CO2 reforming of methane. J Catal, 2007, 247: 101–111

    Article  CAS  Google Scholar 

  38. Chen W, Zhao GF, Xue QS, Chen L, Lu Y. High carbon-resistance Ni/CeAlO3-Al2O3 catalyst for CH4/CO2 reforming. Appl Catal B, 2013, 136-137: 260–268

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Yue or Heyong He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Y., Wu, Y., Cai, W. et al. Promotional effect of cerium on nickel-containing mesoporous silica for carbon dioxide reforming of methane. Sci. China Chem. 58, 148–155 (2015). https://doi.org/10.1007/s11426-014-5251-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5251-3

Keywords

Navigation