Skip to main content
Log in

Biodegradable polymeric nanoparticles based on amphiphilic principle: construction and application in drug delivery

  • Feature Articles
  • Special Issue Recent Research Progress of Biomedical Polymers
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The use of nanotechnology in drug-delivery systems (DDS) is attractive for advanced diagnosis and treatment of cancer diseases. Biodegradable polymeric nanoparticles, for example, have promising applications as advanced drug carriers in cancer treatment. In this review, we discuss the development of drug-delivery systems based on an amphiphilic principle mainly conducted by our group for anti-cancer drug delivery. We first briefly address the synthetic chemistry for amphiphilic biodegradable polymers. In the second part, we summarize progress in the application of self-assembled polymer micelles using amphiphilic biodegradable copolymers as anti-tumor drug carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Statistics from the American Cancer Society. http://www.cancer.org/research/cancerfactsstatistics/cancerfactsfigures2013/index. Accessed November 2013

  2. Zeng HM, Zheng RS, Zhang SW, Zhao P, He J, Chen WQ. Trend analysis of cancer mortality in China between 1989 and 2008. Chin J Oncol, 2012, 34: 252–531

    Google Scholar 

  3. Nanoparticles for targeted and temporally controlled drug delivery. In: Swami A, Shi J, Gadde S, Votruba AR, Kolishetti N, Farokhzad OC, eds. Multifunctional Nanoparticles for Drug Delivery Applications: Imaging, Targeting, and Delivery (Nanostructure Science and Technology). Springer. 2012, 9–29

  4. Giovanella BC, Hinz HR, Kozielski AJ, Stehlin JS, Silber R and Potmesil M. Complete growth inhibition of human cancer xenografts in nude mice by treatment with 20-(S)-camptothecin. Cancer Res, 1991, 51: 3052–3055

    CAS  Google Scholar 

  5. Verschraegen CF, Gilbert BE, Huaringa AJ, Newman R, Harris N, Leyva FJ, Keus L, Campbell K, Nelson-Taylor T, Knight V. Clinical evaluation of the delivery and safety of aerosolized liposomal 9-nitro-20(S)-camptothecin in patients with advanced pulmonary malignancies. Clin Cancer Res, 2004, 10: 2319–2326

    CAS  Google Scholar 

  6. Chow DS, Gong L, Wolfe MD and Giovanella BC. Modified lactone/carboxylate salt equilibria in vivo by liposomal delivery of 9-nitro-camptothecin. Ann NY Acad Sci, 2000, 922: 164–174

    CAS  Google Scholar 

  7. Owens DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm, 2006, 307: 93–102

    CAS  Google Scholar 

  8. Kwon GS, Kataoka K. Block copolymer micelles as long-circulating drug vehicles. Adv Drug Deliv Rev, 1995, 16: 295–309

    CAS  Google Scholar 

  9. Oerlemans C, Bult W, Bos M, Storm G, Nijsen JFW, Hennink WE. Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm Res, 2010, 27: 2569–2589

    CAS  Google Scholar 

  10. Chvapil M. Collagen sponge. Theory and practice of medical application. J Biomed Mater Res, 1977, 11: 721–741

    CAS  Google Scholar 

  11. Tabata Y, Ikada Y. Protein release from gelatin matrices. Adv Drug Deliv Rev, 1988, 31: 287–301

    Google Scholar 

  12. Rousou JA, Engelman RM, Breyer RH. Fibrin glue: an effective hemostatic agent for nonsuturable intraoperative bleeding. Ann Thorac Surg, 1984, 38: 409–410

    CAS  Google Scholar 

  13. GÖpferich A. Polymer bulk erosion. Macromolecules, 1997, 30: 2598–2604

    Google Scholar 

  14. Coulembier O, Degee P, Hedrick JL, Dubois P. From controlled ring-opening polymerization to biodegradable aliphatic polyester: especially poly(beta-malic acid) derivatives. Prog Polym Sci, 2006, 31: 723–747

    CAS  Google Scholar 

  15. Löwik DWPM, van Hest JCM. Peptide based amphiphiles. Chem Soc Rev, 2004, 33: 234–245

    Google Scholar 

  16. Lalatsa A, Schätzlein AG, Mazza M, Le TBH, Uchegbu IF. Amphiphilic poly(l-amino acids)—New materials for drug delivery. J Control Rel, 2012, 161: 523–536

    CAS  Google Scholar 

  17. Ulery BD, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers. J Polym Sci B Polym Phys, 2001, 49: 832–864

    Google Scholar 

  18. Auras R, Lim LK, Selke EM, Tsuji H. Poly(lactic acid): Synthesis, Structures, Properties, and Applications. John Wiley & Sons, Inc. 2010

    Google Scholar 

  19. Chen R, Curran SJ, Curran JM, Hunt JA. The use of poly(l-lactide) and RGD modified microspheres as cell carriers in a flow intermittency bioreactor for tissue engineering cartilage. Biomaterials, 2006, 27: 4453–4460

    CAS  Google Scholar 

  20. Porter JR, Henson A, Popat KC. Biodegradable poly(ɛ-caprolactone) nanowires for bone tissue engineering applications. Biomaterials, 2009, 30: 780–788

    CAS  Google Scholar 

  21. Knop K, Hoogenboom R, Fischer D, Schubert US. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed, 2010, 49: 6288–6308

    CAS  Google Scholar 

  22. Ohya Y, Takahashi A, Nagahama K. Biodegradable polymeric assemblies for biomedical materials, Adv Polym Sci, 2012, 247: 65–114

    CAS  Google Scholar 

  23. Lee J, Bae YH, Sohn YS, Jeong B. Thermogelling aqueous solutions of alternating multiblock copolymers of poly(l-lactic acid) and poly(ethylene glycol). Biomacromolecules, 2006, 7: 1729–1734

    CAS  Google Scholar 

  24. Pierri E, Avgoustakis K. Poly(lactide)-poly(ethylene glycol) micelles as a carrier for griseofulvin. J Biomed Mater Res A, 2005, 75: 639–647

    CAS  Google Scholar 

  25. Zhang Y, Zhuo RX. Synthesis and in vitro drug release behavior of amphiphilic triblock copolymer nanoparticles based on poly (ethylene glycol)and polycaprolactone. Biomaterials, 2005, 26: 6736–6742

    CAS  Google Scholar 

  26. Gong CY, Qian ZY, Liu CB, Huang MJ, Gu YC, Wen YJ, Kan B, Wang K, Dai M, Li XY, Gou ML, Tu MJ, Wei YQ. A thermosensitive hydrogel based on biodegradable amphiphilic poly(ethylene glycol)-polycaprolactone-poly(ethylene glycol) block copolymers. Smart Mater Struct, 2007, 16: 927–933

    CAS  Google Scholar 

  27. Yu Z, He B, Long CY, Liu R, Sheng MM, Wang G, Tang JZ, Gu ZW. Synthesis, characterization, and drug delivery of amphiphilic poly{(lactic acid)-co-[(glycolic acid)-alt-(l-glutamic acid)]}-g-poly (ethylene glycol). Macromol Res, 2012, 20: 250–258

    CAS  Google Scholar 

  28. Liu R, He B, Li D, Lai YS, Tang JZ, Gu ZW. Synthesis and characterization of poly(ethylene glycol)-b-poly(l-histidine)-b-poly(l-lactide) with pH-sensitivity. Polymer, 2012, 53: 1473–1482

    CAS  Google Scholar 

  29. Deming TJ. Synthetic polypeptides for biomedical applications. Prog Polym Sci, 2007, 32: 858–875

    CAS  Google Scholar 

  30. Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discovery, 2003, 2: 347–360

    CAS  Google Scholar 

  31. Lavasanifar A, Samuel J, Kwon GS. Poly(ethylene oxide)-block-poly(L-amino acid) micelles for drug delivery. Adv Drug Deliv Rev, 2002, 54: 169–190

    CAS  Google Scholar 

  32. Kakizawa Y, Kataoka K. Block copolymer micelles for delivery of gene and related compounds. Adv Drug Delivery Rev, 2002, 54: 203–222

    CAS  Google Scholar 

  33. van Dongen SF, de Hong HP, Peters RJ, Nallani M, Nolte RJ, van Hest JC. Biohybrid polymer capsules. Chem Rev, 2009, 109: 6212–6274

    Google Scholar 

  34. Hadjichristidis N, Iatrou H, Pitsikalis M, Sakellariou G. Synthesis of well-defined polypeptide-based materials via the ring-opening polymerization of α-amino acid N-carboxyanhydrides. Chem Rev, 2009, 109: 5528–5578

    CAS  Google Scholar 

  35. Deming TJ. Polypeptide and polypeptide hybrid copolymer synthesis via NCA polymerization. Adv Polym Sci, 2006, 202: 1–18

    CAS  Google Scholar 

  36. Osada K, Kataoka K. Drug and gene delivery based on supramolecular assembly of PEG-polypeptide hybrid block copolymers. Adv Polym Sci, 2006, 202: 113–153

    CAS  Google Scholar 

  37. Lu H, Cheng JJ. Hexamethyldisilazane-mediated controlled polymerization of α-amino acid N-carboxyanhydrides. J Am Chem Soc, 2007, 129: 14114–14115

    CAS  Google Scholar 

  38. Dimitrov I, Schlaad H. Synthesis of nearly monodisperse polystyrenepolypeptide block copolymers via polymerisation of N-carboxyanhydrides. Chem Commun, 2003, 2944–2945

    Google Scholar 

  39. Lutz JF, Schutt D, Kubowicz S. Preparation of well-defined diblock copolymers with short polypeptide segments by polymerization of N-carboxy anhydrides. Macromol Rapid Commun, 2005, 26: 23–28

    CAS  Google Scholar 

  40. Heffernan MJ, Murthy N. Polyketal nanoparticles: a new pH-sensitive biodegradable drug delivery vehicle. Bioconjugate Chem, 2005, 16: 1340–1342

    CAS  Google Scholar 

  41. Lee S, Yang SC, Heffernan MJ, Taylor WR, Murthy N. Polyketal microparticles: a new delivery vehicle for superoxide dismutase. Bioconjugate Chem, 2007, 18: 4–7

    CAS  Google Scholar 

  42. Pospiech D, Jomber H, Jehnichen D, Haussler L, Eckstein K, Scheibner H, Janke A, Kricheldorf HR, Petermann O. Multiblock copolymers of L-lactide and trimethylene carbonate. Biomacromolecules, 2005, 6: 439–446

    CAS  Google Scholar 

  43. Hill JW. Studies on polymerization and ring formation. XVII. Friedel-Crafts synthesis with thepolyanhydrides of the dibasic acids. J Am Chem Soc, 1932, 54: 4105–4106

    CAS  Google Scholar 

  44. Domb AJ, Gallardo CF, Langer R. Poly(anhydrides). 3. Poly(anhydrides) based on aliphatic-aromatic diacids. Macromolecules, 1989, 22: 3200–3204

    CAS  Google Scholar 

  45. Qi M, Li X, Yang Y, Zhou S. Electrospun fibers of acid-labile biodegradable polymers containing ortho ester groups for controlled release of paracetamol. Eur J Pharm Biopharm, 2008, 70: 445–452

    CAS  Google Scholar 

  46. Wang YC, Tang LY, Sun TM, Li C H, Xiong M H, Wang J. Self-assembled micelles of biodegradable triblock copolymers based on poly(ethyl ethylene phosphate) and poly(ɛ-caprolactone) as drug carriers. Biomacromolecules, 2008, 9: 388–395

    CAS  Google Scholar 

  47. Iwasaki Y, Wachiralarpphaithoon C, Akiyoshi K. Novel thermoresponsive polymers having biodegradable phosphoester backbones. Macromolecules, 2007, 40: 8136–8138

    CAS  Google Scholar 

  48. Kaluzynski K, Libisowski J, Penczek S. A new class of synthetic polyelectrolytes. Acidic polyesters of phosphoric acid (poly(hydroxyalkylene phosphates)). Macromolecules, 1976, 9: 365–367

    CAS  Google Scholar 

  49. Lapienis G, Penczek S. Kinetics and thermodynamics of the polymerization of the cyclic phosphate esters. II. Cationic polymerization of 2-methoxy-2-oxo-1,3,2-dioxaphosphorinane (1,3-poropylene methyl phosphate). Macromolecules, 1974, 7: 166–174

    CAS  Google Scholar 

  50. Allcock HR, Kugel RL. Synthesis of high polymeric alkoxy- and aryloxyphosphonitriles. J Am Chem Soc, 1965, 87: 4216–4217

    CAS  Google Scholar 

  51. Laurencin CT, Koh HJ, Neenan TX, Allcock HR, Langer R. Controlled release using a new bioerodible polyphosphazene matrix system. J Biomed Mater Res, 1987, 21: 1231–1246

    CAS  Google Scholar 

  52. Gao M, Jia X, Kuang G, Li Y, Liang D, Wei Y. Thermo-and pH-responsive dendronized copolymers of styrene and maleic anhydride pendant with poly(amidoamine) dendrons as side groups. Macromolecules, 2009, 42: 4273–4281

    CAS  Google Scholar 

  53. Laurent BA, Grayson SM. Synthesis of cyclic dendronized polymers via divergent “graft-from” and convergent click “graft-to” routes: preparation of modular toroidal macromolecules. J Am Chem Soc, 2011, 133: 13421–13429

    CAS  Google Scholar 

  54. Hu J, Su Y, Zhang H, Xu T, Cheng Y. Design of interior-functionalized fully acetylated dendrimers for anticancer drug delivery. Biomaterials, 2011, 32: 9950–9959

    CAS  Google Scholar 

  55. Qiu LY, Bae YH. Polymer architecture and drug delivery. Pharm Res, 2006, 23: 1–30

    CAS  Google Scholar 

  56. Kolhe P, Khandare J, Pillai O, Kannan S, Lieh-Lai M, Kannan RM. Preparation, cellular transport, and activity of polyamidoaminebased dendritic nanodevices with a high drug payload. Biomaterials, 2006, 27: 660–669

    CAS  Google Scholar 

  57. Luo K, Li C, Li L, She W, Wang G, Gu Z. Arginine functionalized peptide dendrimers as potential gene delivery vehicles. Biomaterials, 2012, 33: 4917–4927

    CAS  Google Scholar 

  58. Fischer D, Li Y, Ahlemeyer B, Krieglstein J, Kissel T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials, 2003, 24:1121–1131

    CAS  Google Scholar 

  59. She WC, Luo K, Zhang CY, Wang G, Geng YY, Li L, He B, Gu ZW. The potential of self-assembled, pH-responsive nanoparticles of mPEGylated peptide dendron-doxorubicin conjugates for cancer therapy. Biomaterials, 2013, 34, 1613–1623

    CAS  Google Scholar 

  60. Xu XH, Yuan H, Chang J, He B, Gu ZW. Cooperative hierarchical self-assembly of peptide dendrimers and linear polypeptides into nanoarchitectures mimicking viral capsids. Angew Chem Int Ed, 2012, 51: 3130–3133

    CAS  Google Scholar 

  61. Xu XH, Li YK, Li HP, Liu R, Sheng MM, He B, Gu ZW. Smart nanovehicles based on pH-riggered disassembly of supramolecular peptide-amphiphiles for efficient intracellular drug delivery. Small, 2013, doi: 10.1002/smll.201301885

    Google Scholar 

  62. Albert A. Chemical aspects of selective toxicity. Nature, 1958, 182: 421–423

    CAS  Google Scholar 

  63. Butsele KV, Morille M, Passirani C, Legras P, Benoit JP, Varshney SK, Jérôme R, Jérôme C. Stealth properties of poly(ethylene oxide)-based triblock copolymer micelles: a prerequisite for a pH-triggered targeting system. Acta Biomater, 2011, 7: 3700–3707

    Google Scholar 

  64. Frutos G, Prior-Cabanillas A, París R, Quijada-Garrido I. A novel controlled drug delivery system based on pH-responsive hydrogels included in soft gelatin capsules. Acta Biomater, 2010, 6: 4650–4656

    CAS  Google Scholar 

  65. Gillies ER, Frechet JM. pH-responsive copolymer assemblies for controlled release of doxorubicin. Bioconjug Chem, 2005, 16: 361–368

    CAS  Google Scholar 

  66. Prabaharan M, Grailer JJ, Steeber DA, Gong S. Thermosensitive micelles based on folate-conjugated poly(N-vinylcaprolactam)-block-poly(ethylene glycol) for tumor-targeted drug delivery. Macromol Biosci, 2009, 9: 744–753

    CAS  Google Scholar 

  67. Qu T, Wang A, Yuan J, Shi J, Gao Q. Preparation and characterization of thermo-responsive amphiphilic triblock copolymer and its self-assembled micelle for controlled drug release. Colloids Surf B Biointerfaces, 2009, 72: 94–100

    CAS  Google Scholar 

  68. Nakayama M, Okano T, Miyazaki T, Kohori F, Sakai K, Yokoyama M. Molecular design of biodegradable polymeric micelles for temperature-responsive drug release. J Control Release, 2006, 115: 46–56

    CAS  Google Scholar 

  69. Liu S, Wiradharma N, Gao S, Tong Y, Yang Y. Bio-functional micelles self-assembled from a folate-conjugated block copolymer for targeted intracellular delivery of anticancer drugs. Biomaterials, 2007, 28: 1423–1433

    CAS  Google Scholar 

  70. Carlsson J., Drevin H, Axen R. Protein thiolation and reversible protein-protein conjugation. N-Succinimidyl 3-(2-pyridyldithio)propionate, a new heterobifunctional reagent. Biochem J, 1978, 173: 723–737

    CAS  Google Scholar 

  71. Engin K, Leeper DB, Cater JR, Thistlethwaite AJ, Tupchong L, McFarlane JD. Extracellular pH distribution in human tumors. Int J Hyperthermia, 1995, 11: 211–216

    CAS  Google Scholar 

  72. Ojugo AS, McSheehy PM, McIntyre DJ, McCoy C, Stubbs M, Leach MO, Judson IR, Griffiths JR. Measurement of the extracellular pH of solid tumours in mice by magnetic resonance spectroscopy: A comparison of exogenous 19F and 31P probes. NMR Biomed, 1999, 12: 495–504

    CAS  Google Scholar 

  73. Gilbert HF. Thiol/disulfide exchange equilibria and disulfide bond stability. Methods Enzym, 1995, 251: 8–28

    CAS  Google Scholar 

  74. Meister A, Anderson ME. Glutathione. Annu Rev Biochem 1983, 52: 711–760

    CAS  Google Scholar 

  75. Worrell NR, Cumber AJ, Parnell GD, Mirza A, Forrester JA, Ross WCJ. Effect of linkage variation on pharmacokinetics of ricin-A-chainantibody conjugates in normal rats. Anti-Cancer Drug Design, 1986, 1: 179–188

    CAS  Google Scholar 

  76. Braslawsky GR, Edson MA, Pearce W, Kaneko T, Greenfield RS. Antitumor-activity of adriamycin (hydrazone-linked) immunoconjugates compared with free adriamycin and specificity of tumor-cell killing. Cancer Res, 1990, 50: 6608–6614

    CAS  Google Scholar 

  77. Greenfield RS, Kaneko T, Daues A, Edson MA, Fitzgerald KA, Olech LJ, Grattan JA, Spitalny GL, Braslawsky GR. Evaluation in vitro of adriamycin immunoconjugates synthesized using an acidsensitive hydrazone linker. Cancer Res, 1990, 50: 6600–6607

    CAS  Google Scholar 

  78. Hu XL, Liu S, Chen XS, Mo GJ, Xie ZG, Jing XB. Biodegradable amphiphilic block copolymers bearing protected hydroxyl groups: synthesis and characterization. Biomacromolecules, 2008, 9: 553–560

    CAS  Google Scholar 

  79. West KR, Otto S. Reversible covalent chemistry in drug delivery. Curr Drug Discov Technol, 2005, 2: 123–160

    CAS  Google Scholar 

  80. Hu X, Liu S, Huang Y, Chen X, Jing X. Biodegradable block copolymer-doxorubicin conjugates via different linkages: preparation, characterization, and in vitro evaluation. Biomacromolecules, 2010, 11: 2094–2102

    CAS  Google Scholar 

  81. Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer, 2006, 6: 688–701

    CAS  Google Scholar 

  82. Vicent MJ, Duncan R. Polymer conjugates: nanosized medicines for treating cancer. Trends Biotechnol, 2006, 24: 39–47

    CAS  Google Scholar 

  83. Harrisson S, Nicolas J, Maksimenko A, Bui DT, Mougin J, Couvreur P. Nanoparticles with in vivo anticancer activity from polymer prodrug amphiphiles prepared by living radical polymerization. Angew Chem Int Ed, 2013, 52: 1678–1682

    CAS  Google Scholar 

  84. Grubbs RB. Nitroxide-mediated radical polymerization: limitations and versatility. Polym Rev, 2011, 51: 104–137

    CAS  Google Scholar 

  85. Hawker CJ, Bosman, AW, Harth E. New polymer synthesis by nitroxide nediated living radical polymerizations. Chem. Rev, 2001, 101: 3661–3688

    CAS  Google Scholar 

  86. Kim SY, Shin IG, Lee YM, Cho CS, Sung, YK. Methoxy poly(ethylene glycol) and epsilon-caprolactone amphiphilic block copolymeric micelle containing indomethacin. II. Micelle formation and drug release behaviours. J Control Rel, 1998, 51: 13–22

    CAS  Google Scholar 

  87. Park EK, Lee SB, Lee YM, Preparation and characterization of methoxy poly(ethylene glycol)/poly(epsilon-caprolactone) amphiphilic block copolymeric nanospheres for tumor-specific folatemediated targeting of anticancer drugs. Biomaterials, 2005, 26: 1053–1061

    CAS  Google Scholar 

  88. Wei XW, Gong CY, Gou ML, Fu SZ, Guo QF, Shi S, Luo F, Guo G, Qiu LY, Qian ZY. Biodegradable poly(ɛ-caprolactone)-poly(ethylene glycol) copolymers as drug delivery system. Inter J Pharm, 2009: 381, 1–18

    CAS  Google Scholar 

  89. Lee JH, Jung SW, Kim IS, Jeong YI, Kim YH, Kim SH. Polymeric nanoparticle composed of fatty acids and poly(ethylene glycol) as a drug carrier. Int J Pharm, 2003, 251: 23–32

    CAS  Google Scholar 

  90. Kim SY, Lee YM, Baik DJ, Kang JS. Toxic characteristics of methoxy poly(ethylene glycol)/poly(q-caprolactone) nanospheres: in vitro and in vivo studies in the normal mice. Biomaterials, 2003, 24: 55–63

    CAS  Google Scholar 

  91. Gao JM, Ming J, He B, Gu ZW, Zhang XD. Controlled release of 9-nitro-20(S)-camptothecin from methoxy poly(ethylene glycol)-poly(D, L-lactide) micelles. Biomed Mater, 2008, 3: 015013

    CAS  Google Scholar 

  92. Kang N, Perron ME, Prud’homme RE, Zhang Y, Gaucher G, Leroux JC. Stereocomplex block copolymer micelles: core-shell nanostructures with enhanced stability. Nano Lett, 2005, 5: 315–319

    CAS  Google Scholar 

  93. Liu R, He B, Li D, Lai YS, Tang JZ, Gu ZW. Stabilization of pH-Sensitive mPEG-PH-PLA nanoparticles by stereocomplexation between enantiomeric polylactides. Macromol Rapid Commun, 2012, 33: 1061–1066

    CAS  Google Scholar 

  94. Liu X, Jiang M. Optical switching of self-assembly: micellization and micelle-hollow-sphere transition of hydrogen-bonded polymers. Angew Chem Int Ed, 2006, 118: 3930–3934

    Google Scholar 

  95. Long YY, Song HM, He B, Lai YS, Liu R, Long CY, Gu ZW. Supramolecular self-assembly of monoend-functionalized methoxy poly(ethylene glycol) and α-cyclodextrin: from micelles to hydrogel. J Biomater Appl, 2011, 27: 333–344

    Google Scholar 

  96. Tu C, Zhu L, Li P, Chen Y, Su Y, Yan D, Zhu X, Zhou G. Supramolecular polymeric micelles by the host-guest interaction of star-like calix[4]arene and chlorin e6 for photodynamic therapy. Chem Commun, 2011, 47: 6063–6065

    CAS  Google Scholar 

  97. Cha EJ, Kim JE, Ahn CH. Stabilized polymeric micelles by electrostatic interactions for drug delivery system. Eur J Pharm Sci, 2009, 38: 341–346

    CAS  Google Scholar 

  98. Liang Y, Lai YS, Dong L, He B, Gu ZW. Novel polymeric micelles with cinnamic acid as lipophilic moiety for 9-nitro-20(S)-camptothecin delivery. Mater Lett, 2013, 97: 4–7

    CAS  Google Scholar 

  99. Gillies ER, Fréchet JMJ, pH-responsive copolymer assemblies for controlled release of doxorubicin, Bioconjugate Chem, 2005, 16: 361–368

    CAS  Google Scholar 

  100. Chen W, Meng F, Cheng R, Zhong Z. pH-Sensitive degradable nanoparticles for triggered release of anticancer drugs: a comparative study with micelles, J Control Release, 2010, 142: 40–46

    CAS  Google Scholar 

  101. Ko J, Park K, Kim YS, Kim MS, Han JK, Kim K, Park RW, Kim IS, Song HK, Lee DS, Kwon IC. Tumoral acidic extracellular pH targeting of pH-responsive MPEGpoly(β-amino ester) block copolymer micelles for cancer therapy. J Control Release, 2007, 123: 109–115

    CAS  Google Scholar 

  102. Taillefer J, Jones MC, Brasseur N, van Lier, JE, Leroux JC. Preparation and characterization of pH-responsive polymeric micelles for the delivery of photosensitizing anticancer drugs. J Pharm Sci, 2000, 89: 52–62

    CAS  Google Scholar 

  103. Liu R, Li D, He B, Xu XH, Sheng MM, Lai YS, Wang G, Gu ZW. Anti-tumor drug delivery of pH-sensitive poly(ethylene glycol)-poly(l-histidine-)-poly(l-lactide) nanoparticles J Control Release, 2011, 152: 49–56

    CAS  Google Scholar 

  104. Ross JF, Chaudhuri PK, Ratnam M. Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications. Cancer, 1994, 73: 2432–2443

    CAS  Google Scholar 

  105. Liu Y, Li K, Pan J, Liu B, Feng SS. Folic acid conjugated nanoparticles of mixed lipid monolayer shell and biodegradable polymer core for targeted delivery of Docetaxel. Biomaterials, 2010, 31: 330–338

    CAS  Google Scholar 

  106. Lammers T, Kiessling F, Hennink WE, Storm G. Drug targeting to tumors: principles, pitfalls and (pre-)clinical progress. J Control Release, 2012, 161: 175–187

    CAS  Google Scholar 

  107. Basile L, Pignatello R, Passirani C. Active targeting strategies for anticancer drug nanocarriers. Curr Drug Deli, 2012, 9: 255–268

    CAS  Google Scholar 

  108. Butler JS, Sadler PJ. Targeted delivery of platinum-based anticancer complexes. Curr Opin Chem Biol, 2013, 17: 175–188

    CAS  Google Scholar 

  109. Egusquiaguirre SP, Igartua M, Hernández RM, Pedraz JL. Nanoparticle delivery systems for cancer therapy: advances in clinical and preclinical research. Clin Transl Oncol, 2012, 14: 83–93

    CAS  Google Scholar 

  110. Chen H, Kim S, Li L, Wang S, Park K, Cheng JX. Release of hydrophobic molecules from polymer micelles into cell membranes revealed by Förster resonance energy transfer imaging. Proc Natl Acad Sci USA, 2008, 105: 6596–6601

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhongWei Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S., Wu, Y., He, B. et al. Biodegradable polymeric nanoparticles based on amphiphilic principle: construction and application in drug delivery. Sci. China Chem. 57, 461–475 (2014). https://doi.org/10.1007/s11426-014-5076-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5076-0

Keywords

Navigation