Skip to main content
Log in

Selective DNA detection at Zeptomole level based on coulometric measurement of gold nanoparticle-mediated electron transfer across a self-assembled monolayer

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A selective DNA sensing with zeptomole detection level is developed based on coulometric measurement of gold nanoparticle (AuNPs)-mediated electron transfer (ET) across a self-assembled monolayer on the gold electrode. After immobilization of a thiolated hairpin-structured DNA probe, an alkanethiol monolayer was self-assembled on the resultant electrode to block [Fe(CN)6]3−/4− in a solution from accessing the electrode. In the presence of DNA target, hybridization between the DNA probe and the DNA target breaks the stem duplex of DNA probe. Consequently, stem moiety at the 3′-end of the DNA probes was removed from the electrode surface and made available for hybridization with the reporter DNA-AuNPs conjugates (reporter DNA-AuNPs). The thiolated reporter DNA matches the stem moiety at the 3′-end of the DNA probe. AuNPs were then enlarged by immersing the electrode in a growth solution containing HAuCl4 and H2O2 after the reporter DNA-AuNPs bound onto the electrode surface. The enlarged AuNPs on the electrode restored the ET between the electrode and the [Fe(CN)6]3−/4−, as a result, amplified signals were achieved for DNA target detection using the coulometric measurement of Fe(CN)6 3− electro-reduction by prolonging the electrolysis time. The quantities of ET on the DNA sensor increased with the increase in DNA target concentration through a linear range of 3.0 fM to 1.0 pM when electrolysis time was set to 300 s, and the detection limit was 1.0 fM. Correspondingly, thousands of DNA (zeptomole) copies were detected in 10-μL samples. Furthermore, the DNA sensor showed excellent differentiation ability for single-base mismatch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sassolas A, Leca-Bouvier BD, Blum LJ. DNA biosensors and microarrays. Chem Rev, 2008, 108: 109–139

    Article  CAS  Google Scholar 

  2. Paleček E, Bartošík M. Electrochemistry of nucleic acids. Chem Rev, 2012, 112: 3427–3481

    Article  Google Scholar 

  3. Kimmel DW, LeBlanc G, Meschievitz ME, Cliffel DE. Electrochemical sensors and biosensors. Anal Chem, 2012, 84: 685–707

    Article  CAS  Google Scholar 

  4. Zhang YC, Pothukuchy A, Shin W, Kim Y, Heller A. Detection of ∼103 copies of DNA by an electrochemical enzyme-amplified sandwich assay with ambient O2 as the substrate. Anal Chem, 2004, 76: 4093–4097

    Article  CAS  Google Scholar 

  5. Sin MLY, Liu TT, Pyne JD, Gau V, Liao JC, Wong PK. In situ electrokinetic enhancement for self-assembled-monolayer-based electrochemical biosensing. Anal Chem, 2012, 84: 2702–2707

    Article  CAS  Google Scholar 

  6. Zhang J, Song SP, Zhang LY, Wang LH, Wu HP, Pan D, Fan CH. Sequence-specific detection of femtomolar DNA via a chronocoulometric DNA sensor (CDS): Effects of nanoparticle-mediated amplification and nanoscale control of DNA assembly at electrodes. J Am Chem Soc, 2006, 128: 8575–8580

    Article  CAS  Google Scholar 

  7. Xuan F, Luo X, Hsing I. Ultrasensitive solution-phase electrochemical molecular beacon-based DNA detection with signal amplification by exonuclease III-assisted target recycling. Anal Chem, 2012, 84: 5216–5220

    Article  CAS  Google Scholar 

  8. Ji H, Yan F, Lei J, Ju H. Ultrasensitive electrochemical detection of nucleic acids by template enhanced hybridization followed with rolling circle amplification. Anal Chem, 2012, 84: 7166–7171

    Article  CAS  Google Scholar 

  9. Dong H, Zhu Z, Ju H, Yan F, Triplex signal amplification for electrochemical DNA biosensing by coupling probe-gold nanoparticles-graphene modified electrode with enzyme functionalized carbon sphere as tracer. Biosens Bioelectron, 2012, 33: 228–232

    Article  CAS  Google Scholar 

  10. Saha K, Agasti SS, Kim C, Li XN, Rotello VM. Gold nanoparticles in chemical and biological sensing. Chem Rev, 2012, 112: 2739–2779

    Article  CAS  Google Scholar 

  11. McAuley CB, Dickinson EJF, Rees NV, Toghill KE, Compton RG. New electrochemical methods. Anal Chem, 2012, 84: 669–684

    Article  Google Scholar 

  12. Garcıa T, Casero E, Parra MR, Pariente F, Lorenzo E. Dual-stage DNA sensing: recognition and detectio. Anal Chem, 2008, 80: 9443–9449

    Article  Google Scholar 

  13. Zhou X, Xia SJ, Lu ZQ, Tian Y. Yan YS, Zhu J. Biomineralization-assisted ultrasensitive detection of DNA. J Am Chem Soc, 2010, 132: 6932–6934

    Article  CAS  Google Scholar 

  14. Polsky R, Gill R, Kaganovsky L, Willner I. Nucleic acid-functionalized Pt nanoparticles: catalytic labels for the amplified electrochemical detection of biomolecules. Anal Chem, 2006, 78: 2268–2271

    Article  CAS  Google Scholar 

  15. Selvaraju T, Das J, Jo K, Kwon K, Huh CH, Kim TK, Yang H. Nanocatalyst-based assay using DNA-conjugated Au nanoparticles for electrochemical DNA detection. Langmuir, 2008, 24: 9883–9888

    Article  CAS  Google Scholar 

  16. Kwon SJ, Bard AJ. DNA analysis by application of Pt nanoparticle electrochemical amplification with single label response. J Am Chem Soc, 2012, 134: 10777–10779

    Article  CAS  Google Scholar 

  17. Katayama Y, Ohuchi Y, Hideyoshi H, Yoshihisa K, Mizuo M. The design of cyclic AMP-recognizing oligopeptides and evaluation of its capability for cyclic AMP recognition using an electrochemical system. Anal Chem, 2000, 72: 4671–4674

    Article  CAS  Google Scholar 

  18. Aoki H, Umezawa Y. Trace analysis of an oligonucleotide with a specific sequence using PNA-based ion-channel sensors. Analyst, 2003, 128: 681–685

    Article  CAS  Google Scholar 

  19. Das J, Cederquist KB, Zaragoza AA, Lee PE, Sargent EH, Kelley SO. An ultrasensitive universal detector based on neutralizer displacement. Nat Chem, 2012, 4: 642–648

    Article  CAS  Google Scholar 

  20. Li HL, Li D, Liu JY, Qin YN, Ren JT, Xu S L, Liu YQ, Mayer D, Wang EK. Electrochemical current rectifier as a highly sensitive and selective cytosensor for cancer cell detection. Chem Commun, 2012, 48: 2594–2596

    Article  CAS  Google Scholar 

  21. Liu YQ, Offenhäussera A, Mayer D. Rectified tunneling current response of bio-functionalized metal-bridge-metal junctions. Biosens Bioelectron, 2010, 25: 1173–1178

    Article  CAS  Google Scholar 

  22. Abruiia HD, Denisevich P, Umaiia M, Meyer TJ, Murray RW. Rectifying interfaces using two-layer films of electrochemically polymerized vinylpyridine and vinylbipyridine complexes of ruthenium and iron on electrodes. J Am Chem Soc, 1981, 103: 1–5

    Article  Google Scholar 

  23. Alleman KS, Weber K, Creager SE. Electrochemical rectification at a monolayer-modified electrode. J Phys Chem, 1996, 100: 17050–17058

    Article  CAS  Google Scholar 

  24. Kissling GP, Bunzli C, Fermın DJ. Tuning electrochemical rectification via quantum dot assemblies. J Am Chem Soc, 2010, 132: 16855–16861

    Article  CAS  Google Scholar 

  25. Liu YQ, Offenhausser A, Mayer D. An electrochemically transduced XOR logic gate at the molecular level. Angew Chem Int Ed, 2010, 122: 2649–2652

    Article  Google Scholar 

  26. Yoshio U, Hiroshi A. A number of ion channel sensors have been developed based on various artificial receptors for inorganic and organic ions and bioactive substances. Anal Chem, 2004, 321A–326A

    Google Scholar 

  27. Oh SK, Baker LA, Crooks RM. Electrochemical rectification using mixed monolayers of redox-active ferrocenyl dendrimers and n-alkanethiols. Langmuir, 2002, 18: 6981–6987

    Article  CAS  Google Scholar 

  28. Shein JB, Lai L MH, Eggers PK, Paddon-Row MN, Gooding JJ. Formation of efficient electron transfer pathways by adsorbing gold nanoparticles to self-assembled monolayer modified electrodes. Langmuir, 2009, 25: 11121–11128

    Article  CAS  Google Scholar 

  29. Zhao JJ, Bradbury CR, Fermın DJ. Long-range electronic communication between metal nanoparticles and electrode surfaces separated by polyelectrolyte multilayer films. J Phys Chem C, 2008, 112: 6832–6841

    Article  CAS  Google Scholar 

  30. Noel Chazalviel J, Allongue P. On the origin of the efficient nanoparticle mediated electron transfer across a self-assembled monolayer. J Am Chem Soc, 2011, 133: 762–764

    Article  Google Scholar 

  31. Weizmann Y, Patolsky F, Popov I, Willner I. Telomerase-generated templates for the growing of metal nanowires. Nano Lett, 2004, 4: 787–792

    Article  CAS  Google Scholar 

  32. Du H, Strohsahl CM, Camera J, Miller BL, Krauss TD. Sensitivity and specificity of metal surface-immobilized “molecular beacon” biosensors. J Am Chem Soc, 2005, 127: 7932–7940

    Article  CAS  Google Scholar 

  33. Grabar KC, Freeman RG, Hommer MB, Natan MJ. Preparation and characterization of Au colloid monolayers. Anal Chem, 1995, 67: 735–743

    Article  CAS  Google Scholar 

  34. Demers LM, Mirkin CA, Mucic RC, Reynolds RA, Letsinger RL, Elghanian R, Viswanadham G. A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiolcapped oligonucleotides bound to gold thin films and nanoparticles. Anal Chem, 2000, 72: 5535–5541

    Article  CAS  Google Scholar 

  35. Das J, Jo K, Lee JW, Yang H. Electrochemical immunosensor using p-aminophenol redox cycling by hydrazine combined with a low background current, Anal Chem, 2007, 79: 2790–2796

    Article  CAS  Google Scholar 

  36. Gao Q, Zhang WY, Guo YY, Qi HL, Zhang CX. Highly sensitive impedimetric sensing of DNA hybridization based on the target DNA-induced displacement of gold nanoparticles attached to ssDNA probe. Electrochem Commun, 2011, 13: 335–337

    Article  CAS  Google Scholar 

  37. Engelkes VB, Beebe JM, Frisbie CD. Length-dependent transport in molecular junctions based on SAMs of alkanethiols and alkanedithiols: effect of metal work function and applied bias on tunneling efficiency and contact resistance. J Am Chem Soc, 2004, 126: 14287–14296

    Article  CAS  Google Scholar 

  38. Shein JB, Lai L MH, Eggers PK, Paddon-Row MN, Gooding JJ. Formation of efficient electron transfer pathways by adsorbing gold nanoparticles to self-assembled monolayer modified electrodes. Langmuir, 2009, 25: 11121–11128

    Article  CAS  Google Scholar 

  39. Dai H, Meyer M, Stepaniants S, Ziman M, Stoughton R. Use of hybridization kinetics for differentiating specific from non-specific binding to oligonucleotide microarrays. Nucleic Acids Res, 2002, 30: e86

    Article  Google Scholar 

  40. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature, 1996, 382: 607–609

    Article  CAS  Google Scholar 

  41. Nam JM, Park SJ, Mirkin CA. Bio-barcodes based on oligonucleotide-modified nanoparticles. J Am Chem Soc, 2002, 124: 3820–3821

    Article  CAS  Google Scholar 

  42. Das J, Yang H. Enhancement of electrocatalytic activity of DNA-conjugated gold nanoparticles and its application to DNA detection. J Phys Chem C, 2009, 113: 6093–6099

    Article  CAS  Google Scholar 

  43. Lubin AA, Plaxco KWA. Folding-based electrochemical biosensors: The case for responsive nucleic acid architectures. Chem Res, 2010, 43: 496–505

    Article  CAS  Google Scholar 

  44. Blum AS, Ren T, Parish DA, Trammell SA, Moore MH, Kushmerick JG, Xu GL, Deschamps JR, Pollack SK, Shashidhar R. Ru2(ap)4(σ-oligo(phenyleneethynyl)) molecular wires: synthesis and electronic characterization. J Am Chem Soc, 2005, 127: 10010–10011

    Article  Google Scholar 

  45. Zayats M, Baron R, Popov I, Willner I. Biocatalytic growth of Au nanoparticles: from mechanistic aspects to biosensors design. Nano Lett, 2005, 5: 21–25

    Article  CAS  Google Scholar 

  46. Alhasan AH, Kim DY, Daniel WL, Watson E, Meeks JJ, Thaxton CS, Mirkin CA. Scanometric microRNA array profiling of prostate cancer markers using spherical nucleic acid-gold nanoparticle conjugates. Nanoparticle Conjugates, 2012, 84: 4153–4160

    CAS  Google Scholar 

  47. Das J, Aziz MA, Yang H. A nanocatalyst-based assay for proteins: DNA-free ultrasensitive electrochemical detection using catalytic reduction of p-nitrophenol by gold-nanoparticle labels. J Am Chem Soc, 2006, 128: 16022–16023

    Article  CAS  Google Scholar 

  48. Steel AB, Herne TM, Tarlov MJ. Electrochemical quantitation of DNA immobilized on gold. Anal Chem, 1998, 70, 4670–4677

    Article  CAS  Google Scholar 

  49. Liu J, Yuan XQ, Gao Q, Qi HL, Zhang CX. Ultrasensitive DNA detection based on coulometric measurement of enzymatic silver deposition on gold nanoparticle-modified screen-printed carbon electrode. Sens Actuators B, 2012, 162: 384–390

    Article  CAS  Google Scholar 

  50. Lai GS, Yan F, Wu J, Leng C, Ju HX. Ultrasensitive multiplexed immunoassay with electrochemical stripping analysis of silver nanoparticles catalytically deposited by gold nanoparticles and enzymatic reaction. Anal Chem, 2011, 83: 2726–2732

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Gao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Yuan, X., Liu, X. et al. Selective DNA detection at Zeptomole level based on coulometric measurement of gold nanoparticle-mediated electron transfer across a self-assembled monolayer. Sci. China Chem. 56, 1009–1016 (2013). https://doi.org/10.1007/s11426-013-4860-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4860-6

Keywords

Navigation