Skip to main content
Log in

Decarbonylative C-C bond forming reactions mediated by transition metals

  • Review
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

New methods for carbon-carbon (C-C) forming reactions are constantly emerging in the field of organic synthesis. In this review, a brief history followed by recent developments of decarbonylative C-C forming reactions mediated by transition metals is described. Many different substrates are presented and the review is organized by the different carbonyl precursors, such as acyl chlorides, aldehydes, anhydrides, esters and ketones, used in the respective transformations. Furthermore, the broad scope of these reactions is exhibited by the application to several reaction types (e.g. Heck-type reactions, Suzuki cross-coupling type reactions, C-H activation, etc.) as well as a natural product synthesis (e.g. muscroride A). While several examples are provided, this review marks the beginning of a new field that is still in its infancy and for what might be a new approach to achieve highly efficient reactions that come closer to meeting the standards of chemical economies (e.g. atom, redox, step, etc.) and green chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For a recent perspective on green chemistry, see: Li CJ, Anastas PT. Green chemistry: Present and future. Chem Soc Rev, 2012, 41: 1413–1414 and references therein

    Article  Google Scholar 

  2. This review does not include the distinctly different sub-field of decarboxylative C-C forming reactions and excludes simple decarbonylation reactions that do not involve the formation of a new C-C bond. Furthermore, we apologize in advance to those whose efforts have not been recognized here.

  3. Eschinazi HE. La décarbonylation des aldéhydes et la déhydes et la déshydracarbonylation des alcohols par voie catalytique au palladium. Bull soc chim France, 1952, 967

  4. Eschinazi HE, Pines H. Study in the terpenes series. XXXI. Synthesis of apopinene by catalytic decarbonylation of myrtenal. J Org Chem, 1959, 24: 1369

    Article  CAS  Google Scholar 

  5. Hawthorne JO, Wilt, MH. Decarbonylation of aromatic aldehydes. J Org Chem,1960, 25: 2215–2216

    Article  CAS  Google Scholar 

  6. Hoffman NE, Kanakkanatt AT, Schneider RF. Palladium-catalyzed decarbonylation of trans-α-substituted cinnamaldehydes. J Org Chem, 1962, 27: 2687–2689

    Article  CAS  Google Scholar 

  7. Hoffman NE, Puthenpurackal T. Relative rates of decarbonylation of cinnamaldehyde and trans-α-substituted cinnamaldehydes. J Org Chem, 1965, 30: 420–422

    Article  CAS  Google Scholar 

  8. Tsuji J, Ohno K, Kajimoto, T. Organic syntheses by means of noble metal compounds XX. Decarbonylation of acyl chloride and aldehyde catalyzed by palladium and its relationship with the Rosemund reduction. Tetrahedron Lett, 1965, 50; 4565–4568

    Google Scholar 

  9. Tsuji J, Ohno K. Organic syntheses by means of noble metal compounds XXIX. Decarbonylation of acid halides and carbonylation of alkyl halids catalyzed by rhodium complex. Tetrahedron Lett, 1966, 39: 4713–4716

    Article  Google Scholar 

  10. Blum J. The decarbonylation of aroyl to aryl chlorides. Tetrahedron Lett, 1966, 15: 1605–1608

    Article  Google Scholar 

  11. Prince RH, Raspin, MKA. Olefin formation from saturated aldehydes and acids by reaction with ruthenium and rhodium complexes. Chem Comm, 1966, 6: 156–157

    Google Scholar 

  12. Tsuji J, Ohno K. Decarbonylation reactions using transition metal compounds. Synthesis, 1969, 4: 157–169

    Article  Google Scholar 

  13. Chiusoli GP, Costa M, Pecchini G. Synthesis of ketones from aroyl chlorides and nickel(0) complexes. Transition Metal Chem, 1977, 2: 270–272

    Article  CAS  Google Scholar 

  14. Biavati A, Chiusoli GP, Costa M, Terenghi G. Palladium or nickel-catalyzed benzoylation and phenylation of methyl acrylate. Transition Metal Chem, 1979, 4: 398–399

    Article  CAS  Google Scholar 

  15. Blaser HU, Spencer A. The palladium-catalysed arylation of activated alkenes with aroyl chlorides. J Organometal Chem, 1982, 233: 267–274

    Article  CAS  Google Scholar 

  16. Spencer A. Stereochemical course of the palladium-catalysed arylation of disubstituted activated alkenes with benzoyl chloride. J Organometal Chem, 1982, 240: 209–216

    Article  CAS  Google Scholar 

  17. Spencer A. Selective preparation of non-symetrical substituted divinylbenzenes by palladium-catalysed arylations of alkenes with bromobenzoic derivatives. J Organometal Chem, 1984, 265: 323–331

    Article  CAS  Google Scholar 

  18. Spencer A. Synthesis of styrene and stilbene derivatives by the palladium-catalysed arylation of ethylene with aroyl chlorides. J Organometal Chem, 1983, 247: 117–122

    Article  CAS  Google Scholar 

  19. Krafft TE, Rich JD, McDermott PJ. Palladium-catalyzed reductive coupling of aromatic acid chlorides with disilanes. J Org Chem, 1990, 55: 5430–5432

    Article  CAS  Google Scholar 

  20. Obora Y, Tsuji Y, Kawamura T. Palladium-catalyzed decarbonyla tive coupling of acid chlorides, organodisilanes, and 1,3-dienes. J Am Chem Soc, 1993, 115: 10414–10415

    Article  CAS  Google Scholar 

  21. Obora Y, Tsuji Y, Kawamura T. 1,4-Carbosilylation of 1,3-dienes via palladium catalyzed three-component coupling reaction. J Am Chem Soc, 1995, 117: 9814–9821

    Article  CAS  Google Scholar 

  22. Kokubo K, Matsumasa K, Miura M, Nomura M. Rhodium-catalyzed reaction of aroyl chlorides with alkynes. J Org Chem, 1996, 61: 6941–6946

    Article  CAS  Google Scholar 

  23. Sugihara T, Satoh T, Miura M, Nomura M. Rhodium-catalyzed Mizoroki-Heck-type arylation of alkenes with aroyl chlorides under phosphane- and base-free conditions. Angew Chem Int Ed, 2003, 42: 4672–4674

    Article  CAS  Google Scholar 

  24. For a Pd-catalyzed version of this reaction, see: Sugihara T, Satoh T, Miura M. Mizoroki-Heck type arylation of alkenes using aroyl chlorides under base-free conditions. Tetrahedron Lett, 2005, 46: 8269–8271

    Article  CAS  Google Scholar 

  25. Sugihara T, Satoh T, Miura M, Nomura M. Rhodium-catalyzed coupling reaction of aroyl chlorides with alkenes. Adv Synth Catal, 2004, 346: 1765–1772

    Article  CAS  Google Scholar 

  26. Yasukawa T, Satoh T, Miura M, Nomura M. Iridium-catalyzed reaction of aroyl chlorides with internal alkynes to produce substituted napthalenes and anthracenes. J Am Chem Soc, 2002, 124: 12680–12681

    Article  CAS  Google Scholar 

  27. Zhao X, Yu Z. Rhodium-catalyzed regioselective C-H functionalization via decarbonylation of acid chlorides and C-H bond activation under phosphine-free conditions. J Am Chem Soc, 2008, 130: 8136–8137

    Article  CAS  Google Scholar 

  28. For an intramolecular cyclization of terminal alkynals to cycloalkenes, see: Varela JA, Gonzalez-Rodriguez C, Rubin SG, Castedo L, Saa C. Ru-catalyzed cyclization of terminal alkynals to cycloalkenes. J Am Chem Soc, 2006, 128: 9576–9577

    Article  CAS  Google Scholar 

  29. Guo X, Wang J, Li CJ. An olefination via ruthenium-catalyzed decarbonylative addition of aldehydes to terminal alkynes. J Am Chem Soc, 2009, 131: 15092–15093

    Article  CAS  Google Scholar 

  30. Guo X, Wang J, Li CJ. Ru-catalyzed decarbonylative addition of aliphatic aldehydes to terminal alkynes. Org Lett, 2010, 12: 3176–3178

    Article  CAS  Google Scholar 

  31. Shuai Q, Yang L, Guo X, Baslé O, Li CH. Rhodium-catalyzed oxidative C-H arylation of 2-arylpyridine derivatives via decarbonylation of aromatic aldehydes. J Am Chem Soc, 2010, 132: 12212–12213

    Article  CAS  Google Scholar 

  32. Yang L, Correia CA, Guo X, Li CJ. A novel catalytic decarbonylative Heck-type reaction and conjugated addition of aldehydes to unsaturated carbonyl compounds. Tetrahedron Lett, 2010, 51: 5486–5489

    Article  CAS  Google Scholar 

  33. Yang L, Guo X, Li CJ. The first decarbonylative coupling of aldehydes and norbornenes catalyzed by rhodium. Adv Synth Catal, 2010, 352: 2899–2904

    Article  CAS  Google Scholar 

  34. Yang L, Zeng T, Shuai Q, Guo X, Li CJ. Phosphine ligand triggered oxidative decarbonylative homocoupling of aromatic aldehydes: Selectively generating biaryls and diarylketones. Chem Comm, 2011, 47: 2161–2163

    Article  CAS  Google Scholar 

  35. Blum J, Lipshes Z. Catalytic conversion of benzoic anhydrides into fluorenones. J Org Chem, 1969, 34: 3076–3080

    Article  CAS  Google Scholar 

  36. Blum J, Ashkenasy M, Pickholtz Y. A simple, one-step synthesis of benzo- and dibenzofluorenones. Synthesis, 1974: 352–353

    Google Scholar 

  37. Castaño AM, Echavarren AM. Synthesis of protected 3-methylaspartic acids from glutamic anhydride via nickelacycles. Tetrahedron Lett, 1993, 34: 4361–4362

    Article  Google Scholar 

  38. Stephan MS, Teunissen AJJM, Verzijl GKM, de Vries JG. Heck reactions without salt formation: Aromatic carboxylic anhydrides as arylating agents. Angew Chem, Int Ed, 1998, 37: 662–664

    Article  CAS  Google Scholar 

  39. For a Pd-catalyzed decarbonylative addition of in situ generated anhydrides to alkenes, see: Gooßen LJ, Paetzold J, Winkel L. Pd-catalyzed decarbonylative Heck olefination of aromatic carboxylic acids activated in situ with di-tert-butyl dicarbonate. Synlett, 2002, 10: 1721–1723

    Article  Google Scholar 

  40. O’Brien EM, Bercot EA, Rovis T. Decarbonylative cross-coupling of cyclic anhydrides: Introducing stereochemistry at an sp3 carbon in the cross coupling event. J Am Chem Soc, 2003, 125: 10498–10499

    Article  Google Scholar 

  41. For a similar report using phthalimides, see: Havlik SE, Simmons JM, Winton VJ, Johnson JB. Nickel-mediated decarbonylative cross-coupling of phthalimides with in situ generated diorganozinc reagents. J Org Chem, 2011, 76: 3588–3593

    Article  CAS  Google Scholar 

  42. Gooßen LJ, Paetzold J. New synthesis of biaryls via Rh-catalyzed decarbonylative Suzuki-coupling of carboxylic anhydrides with arylboroxines. Adv Synth Catal, 2004, 346: 1665–1668

    Article  Google Scholar 

  43. Kajita Y, Kurahashi T, Matsubara S. Nickel-catalyzed decarbonylative addition of anhydrides to alkynes. J Am Chem Soc, 2008, 130: 17226–17227

    Article  CAS  Google Scholar 

  44. For a similar report using phthalimides, see: Kajita Y, Matsubara S, Kurahashi T. Nickel-catalyzed decarbonylative addition of phthalimides to alkynes. J Am Chem Soc, 2008, 130: 6058–6059

    Article  CAS  Google Scholar 

  45. For a similar report using phthalimides with 1,3-dienes, see: Fujiwara K, Kurahashi T; Matsubara S. Decarbonylative cycloaddition of phthalimides with 1,3-dienes. Org Lett, 2010, 12: 4548–4551

    Article  CAS  Google Scholar 

  46. Jin W, Yu Z, He W, Ye W, Xiao WJ. Efficient Rh(I)-catalyzed direct arylation and alkenylation of arene C-H bonds via decarbonylation of benzoic and cinnamic anhydrides. Org Lett, 2009, 11: 1317–1320

    Article  CAS  Google Scholar 

  47. Gooßen LJ, Paetzold J. Pd-catalyzed decarbonylative olefination of aryl esters: Towards a waste-free Heck reaction. Angew Chem Int Ed, 2002, 41: 1237–1241

    Article  Google Scholar 

  48. Gooßen LJ, Paetzold J. Decarbonylative Heck olefination of enol esters: Salt-free and environmentally friendly access to vinyl arenes. Angew Chem Int Ed, 2004, 43: 1095–1098

    Article  Google Scholar 

  49. Gribkov DV, Pastine SJ, Schnürch M, Sames D. Ruthenium catalyzed decarbonylative arylation at sp3 carbon centers in pyrrolidine and piperidine heterocycles. J Am Chem Soc, 2007, 129: 11750–11755

    Article  CAS  Google Scholar 

  50. Amaike K, Muto K, Yamaguchi J, Itami K. Decarbonylative C-H coupling of azoles and aryl esters: Unprecedented nickel catalysis and application to the synthesis of muscoride A. J Am Chem Soc, 2012, 134: 13573–13576

    Article  CAS  Google Scholar 

  51. Müller E, Segnitz A, Langer E. Komplebilding und decarbonylierung von mono- und diacetylen-ketonen mit tris-(triphenylphosphin)-rhodium(I)-chlorid. Tetrahedron Lett, 1969, 14: 1129–1132

    Article  Google Scholar 

  52. Müller E, Segnitz A. Decarbonylierung durch Komplexbildung von α, β-Diäthinyl-ketonen mit tris(triphenylphosphin)rhodium(I)-chlorid: Eine neue methode zur herstellung von konjugierten diinen. Liebigs Ann Chem, 1973: 1583–1591

    Google Scholar 

  53. Dermenci A, Whittaker RE, Dong G. Carbon-carbon σ-bond activation: RhI-catalyzed decarbonylation of conjugated ynones. http://dx.doi.org/10.1021/ol400815y

  54. Kaneda K, Azuma H, Wayaku M, Teranishi S. Decarbonylation of α-and β-diketones catalyzed by rhodium compounds. Chem Lett, 1974, 3: 215–216

    Article  Google Scholar 

  55. Murakami M, Amii H, Ito Y. Selective activation of carbon-carbon bonds next to a carbonyl group. Nature, 1994, 370: 540–541

    Article  CAS  Google Scholar 

  56. Murakami M, Itahashi T, Amii H, Takahashi K, Ito Y. New domino sequences involving successive cleavage of carbon-carbon and carbon-oxygen bonds: Discrete product selection dictated by catalyst ligands. J Am Chem Soc, 1998, 120: 9949–9950

    Article  CAS  Google Scholar 

  57. Matsuda T, Shigeno M, Murakami M. Activation of a cyclobutanone carbon-carbon bond over an aldehyde carbon-hydrogen bond in the rhodium-catalyzed decarbonylation. Chem Lett, 2006, 35: 288–289

    Article  CAS  Google Scholar 

  58. Daugulis O, Brookhart M. Decarbonylation of aryl ketones mediated by bulky cyclopentadienylrhodium bis(ethylene) complexes. Organometallics, 2004, 23: 527–534

    Article  CAS  Google Scholar 

  59. Kondo T, Nakamura A, Okada T, Suzuki N, Wada K, Mitsudo TA. Ruthenium-catalyzed reconstructive synthesis of cyclopentenones by unusual coupling of cyclobutenediones with alkenes involving carbon-carbon bond cleavage. J Am Chem Soc, 2000, 122: 6319–6320

    Article  CAS  Google Scholar 

  60. Kondo T, Taguchi Y, Kaneko Y, Niimi M, Mitsudo TA. Ru- and Rh-catalyzed C-C bond cleavage of cyclobutenones: Reconstructive and selective synthesis of 2-pyranones, cyclopentenes, and cyclohexenones. Angew Chem Int Ed, 2004, 43: 5369–5372

    Article  CAS  Google Scholar 

  61. Lei ZQ, Li H, Li Y, Zhang XS, Chen K, Wang X, Sun J, Shi ZJ. Extrusion of CO from aryl ketones: Rhodium(I)-catalyzed C-C bond cleavage directed by a pryidine group. Angew Chem Int Ed, 2012, 51: 2690–2693

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuangBin Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dermenci, A., Dong, G. Decarbonylative C-C bond forming reactions mediated by transition metals. Sci. China Chem. 56, 685–701 (2013). https://doi.org/10.1007/s11426-012-4791-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4791-7

Keywords

Navigation