Skip to main content
Log in

Survey of recent advances of in the field of π-conjugated heterocyclic azomethines as materials with tuneable properties

  • Reviews
  • Special Topic Materials Research at Université de Montréal
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

This account gives an overview of our recent work in the area of conjugated azomethines derived from 2-aminothiophenes. It will be presented that mild reaction conditions can be used to selectively prepare symmetric and unsymmetric conjugated azomethines. It further will be demonstrated that azomethines consisting of various 5-membered aryl heterocycles lead to chemically, reductively, hydrolytically, and oxidatively robust compounds. The optical and electrochemical properties of these materials can be tuned contingent on the degree of conjugation, type of aryl heterocycle, and by including various electronic groups. The end result is materials having colors spanning 250 nm across the visible spectrum. These colors further can be tuned via electrochemical or chemical doping. The resulting doped states have high color contrasts from their corresponding neutral states. The collective opto-electronic properties and the means to readily tune them, make thiophenoazomethine derivatives interesting materials for potential use in a gamut of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chiang CK, Fincher CRJ, Park YW, Heeger AJ, Shirakawa H, Louis EJ, Gau SC, MacDiarmid AG. Electrical conductivity in doped polyacetylene. Phys Rev Lett, 1977, 39(17): 1098–1101

    Article  CAS  Google Scholar 

  2. Morin JF, Leclerc M, Adès D, Siove A. Polycarbazoles: 25 years of progress. Macromol Rapid Commun, 2005, 26(10): 761–778

    Article  CAS  Google Scholar 

  3. Klärner G, Müller M, Morgenroth F, Wehmeier M, Soczka-Guth T, Müllen K. Conjugated oligomers and polymers —New routes, new structures. Synthetic Met, 1997, 84(1–3): 297–301

    Article  Google Scholar 

  4. Rasmussen SC, Schwiderski RL, Mulholland ME. Thieno[3,4-b]pyrazines and their applications to low band gap organic materials. Chem Commun, 2011, 47(41): 11394–11410

    Article  CAS  Google Scholar 

  5. Mishra A, Ma CQ, Bäuerle P. Functional oligothiophenes: Molecular design for multidimensional nanoarchitectures and their applications. Chem Rev, 2009, 109(3): 1141–1276

    Article  CAS  Google Scholar 

  6. Schlüter AD. The tenth anniversary of suzuki polycondensation (spc). J Polym Sci Pol Chem, 2001, 39(10): 1533–1556

    Article  Google Scholar 

  7. Chemli M, Haj Said A, Fave JL, Barthou C, Majdoub M. Synthesis and chemical modification of new luminescent substituted poly(p-phenylene) polymers. J Appl Polym Sci, 2012, 125(5): 3913–3919

    Article  CAS  Google Scholar 

  8. Senkovskyy V, Tkachov R, Beryozkina T, Komber H, Oertel U, Horecha M, Bocharova V, Stamm M, Gevorgyan SA, Krebs FC, Kiriy A. “Hairy” poly(3-hexylthiophene) particles prepared via surface-initiated kumada catalyst-transfer polycondensation. J Am Chem Soc, 2009, 131(45): 16445–16453

    Article  CAS  Google Scholar 

  9. Tam TL, Tan HHR, Ye W, Mhaisalkar SG, Grimsdale AC. One-pot synthesis of 4,8-dibromobenzo[1,2-d;4,5-d’]bistriazole and synthesis of its derivatives as new units for conjugated materials. Org Lett, 2011, 14(2): 532–535

    Article  CAS  Google Scholar 

  10. Van den Bergh K, De Winter J, Gerbaux P, Verbiest T, Koeckelberghs G. Ni-catalyzed polymerization of poly(3-alkoxythiophene)s. Macromol Chem Phys, 2011, 212(4): 328–335

    Google Scholar 

  11. Pei J, Wen S, Zhou Y, Dong Q, Liu Z, Zhang J, Tian W. A low band gap donor-acceptor copolymer containing fluorene and benzothiadiazole units: Synthesis and photovoltaic properties. New J Chem, 2011, 35(2): 385–393

    Article  CAS  Google Scholar 

  12. Cheng YJ, Luh TY. Synthesizing optoelectronic heteroaromatic conjugated polymers by cross-coupling reactions. J Organomet Chem, 2004, 689(24): 4137–4148

    Article  CAS  Google Scholar 

  13. Berrouard P, Najari A, Pron A, Gendron D, Morin P-O, Pouliot J-R, Veilleux J, Leclerc M. Synthesis of 5-alkyl[3,4-c]thienopyrrole-4,6-dione-based polymers by direct heteroarylation. Angew Chem Int Ed, 2012, 51(9): 2068–2071

    Article  CAS  Google Scholar 

  14. Hofmann S, Thomschke M, Lüssem B, Leo K. Top-emitting organic light-emitting diodes. Opt Express, 2011, 19(S6): A1250–A1264

    Article  CAS  Google Scholar 

  15. Chen S, Deng L, Xie J, Peng L, Xie L, Fan Q, Huang W. Recent developments in top-emitting organic light-emitting diodes. Adv Mater, 2010, 22(46): 5227–5239

    Article  CAS  Google Scholar 

  16. Zhong C, Duan C, Huang F, Wu H, Cao Y. Materials and devices toward fully solution processable organic light-emitting diodes. Chem Mater, 2010, 23(3): 326–340

    Article  CAS  Google Scholar 

  17. Zhang F, Wu D, Xu Y, Feng X. Thiophene-based conjugated oligomers for organic solar cells. J Mater Chem, 2011, 21(44): 17590–17600

    Article  CAS  Google Scholar 

  18. Xue J. Perspectives on organic photovoltaics. Polymer Rev, 2010, 50(4): 411–419

    Article  CAS  Google Scholar 

  19. Beaujuge PM, Reynolds JR. Color control in π-conjugated organic polymers for use in electrochromic devices. Chem Rev, 2010, 110(1): 268–320

    Article  CAS  Google Scholar 

  20. Mortimer RJ, Dyer AL, Reynolds JR. Electrochromic organic and polymeric materials for display applications. Displays, 2006, 27(1): 2–18

    Article  CAS  Google Scholar 

  21. Haubner K, Jaehne E, Adler HJP, Koehler D, Loppacher C, Eng LM, Grenzer J, Herasimovich A, Scheiner S. Assembly, structure, and performance of an ultra-thin film organic field-effect transistor (OFET) based on substituted oligothiophenes. Org Electron, 2009, 75–94

  22. Yumusak C, Sariciftci NS. Organic electrochemical light emitting field effect transistors. Appl Phys Lett, 2010, 97(3): 033302

    Article  CAS  Google Scholar 

  23. Aleshin AN, Shcherbakov IP, Petrov VN, Titkov AN. Solution-processed polyfluorene-zno nanoparticles ambipolar light-emitting field-effect transistor. Org Electron, 2011, 12(8): 1285–1292

    Article  CAS  Google Scholar 

  24. Okamoto K, Luscombe CK. Controlled polymerizations for the synthesis of semiconducting conjugated polymers. Polym Chem, 2011, 2(11): 2424–2434

    Article  CAS  Google Scholar 

  25. Starčević K, Boykin DW, Karminski-Zamola G. New amidino-benzimidazolyl thiophenes: Synthesis and photochemical synthesis. Heteroat Chem, 2003, 14(3): 218–222

    Article  CAS  Google Scholar 

  26. Younes AH, Zhang L, Clark RJ, Davidson MW, Zhu L. Electronic structural dependence of the photophysical properties of fluorescent heteroditopic ligands-implications in designing molecular fluorescent indicators. Org Biomol Chem, 2010, 8(23): 5431–5441

    Article  CAS  Google Scholar 

  27. Karacsony O, Deschamps JR, Trammell SA, Nita R, Knight DA. Synthesis of a 2,2′-bipyridyl functionalized oligovinylene-phenylene using heck and horner-wadsworth-emmons reactions and X-ray crystal structure of e-(4-(4-bromostyryl)phenyl)(methyl)sulfane. Molecules, 2012, 17: 5724–5732

    Article  CAS  Google Scholar 

  28. Patil PS, Haram NS, Pal RR, Periasamy N, Wadgaonkar PP, Salunkhe MM. Synthesis, spectroscopy, and electrochemical investigation of new conjugated polymers containing thiophene and 1,3,4-thiadiazole in the main chain. J Appl Polym Sci, 2012, 125(3): 1882–1889

    Article  CAS  Google Scholar 

  29. Jenekhe SA, Yang CJ, Vanherzeele H, Meth JS. Cubic nonlinear optics of polymer thin films. Effects of structure and dispersion on the nonlinear optical properties of aromatic schiff base polymers. Chem Mater, 1991, 3(6): 985–987

    Article  CAS  Google Scholar 

  30. Schab-Balcerzak E, Grucela-Zajac M, Krompiec M, Niestroj A, Janeczek H. New low band gap compounds comprised of naphthalene diimide and imine units. Synth Met, 2012, 162(5–6): 543–553

    Article  CAS  Google Scholar 

  31. Bolduc A, Dufresne S, Skene WG. Chemical doping of edot azomethine derivatives: Insight into the oxidative and hydrolytic stability. J Mater Chem, 2012, 22(11): 5053–5064

    Article  CAS  Google Scholar 

  32. Jursic BS. Suitability of furan, pyrrole and thiophene as dienes for diels-alder reactions viewed through their stability and reaction barriers for reactions with acetylene, ethylene and cyclopropene. An am1 semiempirical and b3lyp hybrid density functional theory study. Theochem, 1998, 454(2–3): 105–116

    Article  CAS  Google Scholar 

  33. Bourgeaux M, Skene WG. Photophysics and electrochemistry of conjugated oligothiophenes prepared by using azomethine connections. J Org Chem, 2007, 72(23): 8882–8892

    Article  CAS  Google Scholar 

  34. Yang CJ, Jenekhe SA. Conjugated aromatic poly(azomethines). 1. Characterization of structure, electronic spectra, and processing of thin films from soluble complexes. Chem Mater, 1991, 3(5): 878–887

    Article  CAS  Google Scholar 

  35. da Silva CM, da Silva DL, Martins CVB, de Resende MA, Dias ES, Magalhães TFF, Rodrigues LP, Sabino AA, Alves RB, de Fátima Â. Synthesis of aryl aldimines and their activity against fungi of clinical interest. Chem Biol Drug Des, 2011, 78(5): 810–815

    Article  CAS  Google Scholar 

  36. Matharu BK, Sharma JR, Manrao MR. Aldimines: Synthesis and effect of molecule dimension on antifungal potential. J Indian Counc Chem, 2006, 23: 47–50

    CAS  Google Scholar 

  37. Rani N, Sharma JR, Manrao MR. Synthesis and comparative fungitoxicity of benzalbenzylamines and benzalanilines. Pestic Res J, 2006, 18: 129–132

    CAS  Google Scholar 

  38. Niazi S, Javali C, Paramesh M, Shivaraja S. Study of influence of linkers and substitutions on antimicrobial activity of some schiff bases. Int J Pharm Pharm Sci, 2010, 2: 108–112

    CAS  Google Scholar 

  39. Hania MM. Synthesis of some imines and investigation of their biological activity. E-J Chem, 2009, 6: 629–632

    Article  CAS  Google Scholar 

  40. Ozkay Y, Incesu Z, Isikdag I, Yesilkaya M. Antiproliferative effects of some n-benzylideneanilines. Cell Biochem Funct, 2008, 26: 102–106

    Article  CAS  Google Scholar 

  41. Han SY, Inoue H, Terada T, Kamoda S, Saburi Y, Sekimata K, Saito T, Kobayashi M, Shinozaki K, Yoshida S, Asami T. N-benzylideneaniline and N-benzylaniline are potent inhibitors of lignostilbene-α,β-dioxygenase, a key enzyme in oxidative cleavage of the central double bond of lignostilbene. J Enzyme Inhib Med Chem, 2003, 18: 279–283

    Article  CAS  Google Scholar 

  42. Dronia H, Gruss U, Gaegele G, Friedrich T, Weiss H. Structure-activity analysis of fluorinated 1-n-arylamino-1-arylmethane-phosphonic acid esters as inhibitors of the nadh:Ubiquinone oxidoreductase (complex i). J Comput-Aided Mol Des, 1996, 10: 100–106

    Article  CAS  Google Scholar 

  43. Pasayat S, Dash SP, Saswati, Majhi PK, Patil YP, Nethaji M, Dash HR, Das S, Dinda R. Mixed-ligand aroylhydrazone complexes of molybdenum: Synthesis, structure and biological activity. Polyhedron, 2012, 38(1): 198–204

    Article  CAS  Google Scholar 

  44. Patel RN, Singh A, Shukla KK, Sondhiya VP, Patel DK, Singh Y, Pandey R. Design, synthesis, and characterization of a series of biologically active copper(II) schiff-base coordination compounds. J Coord Chem, 2012, 65: 1381–1397

    Article  CAS  Google Scholar 

  45. Kerneghan PA, Halperin SD, Bryce DL, Maly KE. Postsynthetic modification of an imine-based microporous organic network. Can J Chem, 2011, 89(5): 577–582, S577/571-S577/516

    Article  CAS  Google Scholar 

  46. Uribe-Romo FJ, Doonan CJ, Furukawa H, Oisaki K, Yaghi OM. Crystalline covalent organic frameworks with hydrazone linkages. J Am Chem Soc, 2011, 133(30): 11478–11481

    Article  CAS  Google Scholar 

  47. Pandey P, Katsoulidis AP, Eryazici I, Wu Y, Kanatzidis MG, Nguyen ST. Imine-linked microporous polymer organic frameworks. Chem Mater, 2010, 22(17): 4974–4979

    Article  CAS  Google Scholar 

  48. Uribe-Romo FJ, Hunt JR, Furukawa H, Klöck C, O’Keeffe M, Yaghi OM. A crystalline imine-linked 3-d porous covalent organic framework. J Am Chem Soc, 2009, 131(13): 4570–4571

    Article  CAS  Google Scholar 

  49. Pattakaran RLR, Burkanudeen AR. Synthesis and characterization of epoxy-containing schiff-base and phenylthiourea groupes for improved thermal conductivity. Polym-Plast Technol, 2012, 51: 140–145

    Article  CAS  Google Scholar 

  50. Zhang XH, Huang LH, Chen S, Qi GR. Improvement of thermal properties and flame retardancy of epoxy-amine thermosets by introducing bisphenol containing azomethine moiety. Express Polym Lett, 2007, 1(5): 326–332

    Article  CAS  Google Scholar 

  51. Ayesha Kausar SZ, Ahmad Z, Muhammad IS. Novel processable and heat resistant poly(phenylthiourea azomethine imide)s: Synthesis and characterization. Polym Degrad Stab, 2010, 95: 1826–1833

    Article  CAS  Google Scholar 

  52. Bourque AN, Dufresne S, Skene WG. Thiophene-phenyl azomethines with varying rotational barriers-model compounds for examining imine fluorescence deactivation. J Phys Chem C, 2009, 113(45): 19677–19685

    Article  CAS  Google Scholar 

  53. Dong Y, Bolduc A, McGregor N, Skene WG. Push-pull aminobithiophenes-highly fluorescent stable fluorophores. Org Lett, 2011, 13(7): 1844–1847

    Article  CAS  Google Scholar 

  54. Dufresne S, Perez Guarin SA, Bolduc A, Bourque AN, Skene WG. Conjugated fluorene-thiophenes prepared from azomethine connections part i. The effect of electronic and aryl groups on the spectroscopic and electrochemical properties. Photochem Photobiol Sci, 2009, 8(6): 796–804

    Article  CAS  Google Scholar 

  55. Knipping É, Roche IU, Dufresne S, McGregor N, Skene WG. Selective fluorescence turn-on of a prefluorescent azomethine with Zn2+. Tetrahedron Lett, 2011, 52(34): 4385–4387

    Article  CAS  Google Scholar 

  56. Farcas A, Jarroux N, Ghosh I, Guégan P, Nau WM, Harabagiu V. Polyrotaxanes of pyrene-triazole conjugated azomethine and α-cyclodextrin with high fluorescence properties. Macromol Chem Phys, 2009, 210(17): 1440–1449

    Article  CAS  Google Scholar 

  57. Sibel Derinkuyu KE, Oter O, Ergun Y. Ph-driver fluorescent switch behavior of azomethine dyes in solid matrix materials. Spectrosc Lett, 2010, 43: 500–512

    Article  CAS  Google Scholar 

  58. Liu JL, Xu S, Yan B. Photoactive hybrids with the functionalized schiff-base derivatives covalently bonded inorganic silica network: Sol-gel synthesis, characterization and photoluminescence. Colloids Surf A, 2011, 373(1–3): 116–123

    Article  CAS  Google Scholar 

  59. Sek D, Grabiec E, Janeczek H, Jarzabek B, Kaczmarczyk B, Domanski M, Iwan A. Structure-properties relationship of linear and star-shaped imines with triphenylamine moieties as hole-transporting materials. Opt Mater, 2010, 32(11): 1514–1525

    Article  CAS  Google Scholar 

  60. Yen HJ, Liou GS. Novel blue and red electrochromic poly(azomethine ether)s based on electroactive triphenylamine moieties. Org Electron, 2010, 11(2): 299–310

    Article  CAS  Google Scholar 

  61. Is OD, Koyuncu FB, Koyuncu S, Ozdemir E. A new imine coupled pyrrole-carbazole-pyrrole polymer: Electro-optical properties and electrochromism. Polymer, 2010, 51(8): 1663–1669

    Article  CAS  Google Scholar 

  62. Gao Z, Yu Y, Xu Y, Li S. Synthesis and characterization of a liquid crystalline epoxy containing azomethine mesogen for modification of epoxy resin. J Appl PolymSci, 2007, 105(4): 1861–1868

    Article  CAS  Google Scholar 

  63. Mallikharjuna Rao Darla SV. Synthesis and characterisation of azomethine class thermotropic liquid crystals and their application in non-linear optics. Liq Cryst, 2012, 39(1): 63–70

    Article  CAS  Google Scholar 

  64. Iwan A, Bilski P, Janeczek H, Jarzabek B, Domanski M, Rannou P, Sikora A, Pociecha D, Kaczmarczyk B. Thermal, optical, electrical and structural study of new symmetrical azomethine based on poly(1,4-butanediol)bis(4-aminobenzoate). J Mol Struct, 2010, 963(2–3): 175–182

    Article  CAS  Google Scholar 

  65. Iwan A, Palewicz M, Sikora A, Chmielowiec J, Hreniak A, Pasciak G, Bilski P. Aliphatic-aromatic poly(azomethine)s with ester groups as thermotropic materials for opto(electronic) applications. Synth Met, 2010, 160(17–18): 1856–1867

    Article  CAS  Google Scholar 

  66. Hindson JC, Ulgut B, Friend RH, Greenham NC, Norder B, Kotlewski A, Dingemans TJ. All-aromatic liquid crystal triphenylamine-based poly(azomethine)s as hole transport materials for opto-electronic applications. J Mater Chem, 2010, 20(5): 937–944

    Article  CAS  Google Scholar 

  67. Bürgi HB, Dunitz JD. Crystal and molecular structures of benzylideneaniline, benzylideneaniline-p-carboxylic acid and p-methylbenzylidene-p-nitroaniline. Helv Chim Acta, 1970, 53(7): 1747–1764

    Article  Google Scholar 

  68. Hoekstra A, Meertens P, Vos A. Refinement of the crystal structure of trans-stilbene (TSB). The molecular structure in the crystalline and gaseous phases. Acta Crystallogr, Sect B: Struct Sci, 1975, 31(12): 2813–2817

    Article  Google Scholar 

  69. Bartholomew GP, Bu X, Bazan GC. Preferential cocrystallization among distyrylbenzene derivatives. Chem Mater, 2000, 12: 2311–2318

    Article  CAS  Google Scholar 

  70. Zhu S, Zhu S, Jin G, Li Z. Strong phenyl-perfluorophenyl π-π stacking and C-H…F-C hydrogen bonding interactions in the crystals of the corresponding aromatic aldimines. Tetrahedron Lett, 2005, 46(15): 2713–2716

    Article  CAS  Google Scholar 

  71. Mallet C, Allain M, Leriche P, Frere P. Competition between π-π or furan-perfluorophenyl stacking interactions in conjugated compounds prepared from azomethine connections. CrystEngComm, 2011, 13(19): 5833–5840

    Article  CAS  Google Scholar 

  72. Roncali J. Conjugated poly(thiophenes): Synthesis, functionalization, and applications. Chem Rev, 1992, 92(4): 711–738

    Article  CAS  Google Scholar 

  73. McCullough RD, Tristram-Nagle S, Williams SP, Lowe RD, Jayaraman M. Self-orienting head-to-tail poly(3-alkylthiophenes): New insights on structure-property relationships in conducting polymers. J Am Chem Soc, 1993, 115(11): 4910–4911

    Article  CAS  Google Scholar 

  74. Facchetti A. Electroactive oligothiophenes and polythiophenes for organic field effect transistors. Handbook of Thiophene-Based Materials: Applications in Organic Electronics and Photonics, 2009, 1: 595–646

    Article  Google Scholar 

  75. Lu K, Liu Y. Polythiophenes: Important conjugated semiconducting polymers for organic field-effect transistors. Curr Org Chem, 2010, 14: 2017–2033

    Article  CAS  Google Scholar 

  76. Gigli G, Barbarella G, Favaretto L, Cacialli F, Cingolani R. High-efficiency oligothiopene-based light-emitting diodes. Appl Phys Lett, 1999, 75: 439–441

    Article  CAS  Google Scholar 

  77. Amb CM, Dyer AL, Reynolds JR. Navigating the color palette of solution-processable electrochromic polymers. Chem Mater, 2011, 23: 397–415

    Article  CAS  Google Scholar 

  78. Gunbas G, Toppare L. Electrochromic conjugated polyheterocycles and derivatives-highlights from the last decade towards realization of long lived aspirations. Chem Commun, 2012, 48: 1083–1101

    Article  CAS  Google Scholar 

  79. Bench R, Duflos J, Dupas G, Bourguignon J, Queguiner G. Synthesis and study of chiral nadh models in the thieno[2,3-b]pyridine series. J Heterocycl Chem, 1989, 26(6): 1595–1600

    Article  Google Scholar 

  80. Chirakadze GG, Geliashvili EE, Gagolishvili MS. Synthesis and properties of thiophene containing azo dyes and pigments. Izv Akad Nauk Gruz, Ser Khim, 1999, 25: 203–209

    CAS  Google Scholar 

  81. Ivanova VN. Nitrogenous compounds of phenylated derivatives of thiophene. I. Zh Obshch Khim, 1958, 28: 1232–1238

    CAS  Google Scholar 

  82. Puterova Z, Krutošíková A, Végh D. Gewald reaction: Synthesis, properties and applications of substituted 2-aminothiophenes. ARKIVOC, 2010, i: 209–246

    Google Scholar 

  83. Buchstaller H-P, Siebert CD, Lyssy RH, Frank I, Duran A, Gottschlich R, Noe CR. Synthesis of novel 2-aminothiophene-3-carboxylates by variations of the gewald reaction. Monats Chem, 2001, 132(2): 279–293

    Article  CAS  Google Scholar 

  84. Sabnis RW, Rangnekar DW, Sonawane ND. 2-Aminothiophenes by the gewald reaction. J Heterocycl Chem, 1999, 36(2): 333–345

    Article  CAS  Google Scholar 

  85. Bourgeaux M, Vomscheid S, Skene WG. Optimized synthesis and simple purification of 2,5-diaminothiophene-3,4-dicarboxylic acid diethyl ester. Synth Commun, 2007, 37: 3551–3558

    Article  CAS  Google Scholar 

  86. Gewald K. Heterocycles from ch-acidic nitriles. Vii. 2-Aminothiophene from a-oxo mercaptans and methylene-active nitriles. Chem Ber, 1965, 98(11): 3571–3577

    Article  CAS  Google Scholar 

  87. Gewald K. Methods for the synthesis of 2-aminothiophenes and their reactions (review). Chem Hetero Comp, 1976, 12(10): 1077–1090

    Article  Google Scholar 

  88. Gewald K, Gruner M, Hain U, Süptitz G. Zur ringumwandlung von 2-amino-thiophen-3-carbonsäureestern: Pyridon-und pyridazinonderivate. Monats Chem, 1988, 119(8–9): 985–992

    CAS  Google Scholar 

  89. Gewald VK, Kleinert M, Thiele B, Hentschel M. Zur basenkatalysierten reaktion von methylenaktiven nitrilen mit schwefel. J Prak Chem, 1972, 314(2): 303–314

    Article  CAS  Google Scholar 

  90. Angell RM, Atkinson FL, Brown MJ, Chuang TT, Christopher JA, Cichy-Knight M, Dunn AK, Hightower KE, Malkakorpi S, Musgrave JR, Neu M, Rowland P, Shea RL, Smith JL, Somers DO, Thomas SA, Thompson G, Wang R. N-(3-cyano-4,5,6,7-tetrahydro-1-benzothien-2-yl)amides as potent, selective, inhibitors of jnk2 and jnk3. Bioorg Med Chem Lett, 2007, 17: 1296–1301

    Article  CAS  Google Scholar 

  91. Bowers S, Truong AP, Neitz RJ, Neitzel M, Probst GD, Hom RK, Peterson B, Galemmo RA, Jr., Konradi AW, Sham HL, Toth G, Pan H, Yao N, Artis DR, Brigham EF, Quinn KP, Sauer JM, Powell K, Ruslim L, Ren Z, Bard F, Yednock TA, Griswold-Prenner I. Design and synthesis of a novel, orally active, brain penetrant, tri-substituted thiophene based jnk inhibitor. Bioorg Med Chem Lett, 2011, 21: 1838–1843

    Article  CAS  Google Scholar 

  92. De SK, Barile E, Chen V, Stebbins JL, Cellitti JF, Machleidt T, Carlson CB, Yang L, Dahl R, Pellecchia M. Design, synthesis, and structure-activity relationship studies of thiophene-3-carboxamide derivatives as dual inhibitors of the c-jun n-terminal kinase. Bioorg Med Chem, 2011, 19: 2582–2588

    Article  CAS  Google Scholar 

  93. Grembecka J, He S, Shi A, Purohit T, Muntean AG, Sorenson RJ, Showalter HD, Murai MJ, Belcher AM, Hartley T, Hess JL, Cierpicki T. Menin-mll inhibitors reverse oncogenic activity of mll fusion proteins in leukemia. Nat Chem Biol, 2012, 8: 277–284

    Article  CAS  Google Scholar 

  94. Aurelio L, Christopoulos A, Flynn BL, Scammells PJ, Sexton PM, Valant C. The synthesis and biological evaluation of 2-amino-4,5,6,7,8,9-hexahydrocycloocta[b]thiophenes as allosteric modulators of the a1 adenosine receptor. Bioorg Med Chem Lett, 2011, 21: 3704–3707

    Article  CAS  Google Scholar 

  95. Kumar V, Madan AK. Prediction of the agonist allosteric enhancer activity of thiophenes with respect to human a1 adenosine receptors using topological indices. Pharm Chem J, 2007, 41: 140–145

    Article  CAS  Google Scholar 

  96. Nikolakopoulos G, Figler H, Linden J, Scammells PJ. 2-Aminothiophene-3-carboxylates and carboxamides as adenosine a1 receptor allosteric enhancers. Bioorg Med Chem, 2006, 14: 2358–2365

    Article  CAS  Google Scholar 

  97. Gaber HM, Bagley MC, Sherif SM. Antimicrobial investigations on synthetic p-tolylazo derivatives of thienopyrimidinone based on an ortho-functionalized thiophene nucleus. Eur J Chem, 2010, 1: 115–123

    Article  CAS  Google Scholar 

  98. Panchamukhi SI, Mulla JAS, Shetty NS, Khazi MIA, Khan AY, Kalashetti MB, Khazi IAM. Benzothieno[3,2-e][1,2,4]triazolo [4,3-c]pyrimidines: Synthesis, characterization, antimicrobial activity, and incorporation into solid lipid nanoparticles. Arch Pharm (Weinheim, Ger), 2011, 344: 358–365

    Article  CAS  Google Scholar 

  99. Shams HZ, Mohareb RM, Helal MH, Mahmoud AE-S. Design and synthesis of novel antimicrobial acyclic and heterocyclic dyes and their precursors for dyeing and/or textile finishing based on 2-n-acylamino-4,5,6,7-tetrahydro-benzo[b]thiophene systems. Mole-cules, 2011, 16: 6271–6305

    CAS  Google Scholar 

  100. Hallas G, Choi JH. Synthesis and spectral properties of azo dyes derived from 2-aminothiophenes and 2-aminothiazoles. Dyes Pigm, 1999, 42(3): 249–265

    Article  CAS  Google Scholar 

  101. Hallas G, Choi JH. Synthesis and properties of novel aziridinyl azo dyes from 2-aminothiophenes-Part 1: Synthesis and spectral properties. Dyes Pigm, 1999, 40(2–3): 99–117

    Article  CAS  Google Scholar 

  102. Hallas G, Choi JH. Synthesis and properties of novel aziridinyl azo dyes from 2-aminothiophenes-Part 2: Application of some disperse dyes to polyester fibres. Dyes Pigm, 1999, 40(2–3): 119–129

    Article  CAS  Google Scholar 

  103. Hallas G, Towns AD. Dyes derived from aminothiophenes. Part 1: Synthesis of some heterocyclic disperse dyes using the gewald reaction. Dyes Pigm, 1996, 32(3): 135–149

    Article  CAS  Google Scholar 

  104. Hallas G, Towns AD. A comparison of the properties of some 2-aminothiophene-derived disperse dyes. Dyes Pigm, 1996, 31(4): 273–289

    Article  CAS  Google Scholar 

  105. Hallas G, Towns AD. Dyes derived from aminothiophenes. Part 4: Synthesis of some nitro-substituted thiophene-based azo disperse dyes. Dyes Pigm, 1997, 33(4): 319–336

    CAS  Google Scholar 

  106. Hallas G, Towns AD. Dyes derived from aminothiophenes-Part 2. Spectroscepic properties of some disperse dyes derived from 2-aminothiophenes. Dyes Pigm, 1997, 33(3): 205–213

    Article  CAS  Google Scholar 

  107. Hallas G, Towns AD. Dyes derived from aminothiophenes. Part 6: Application of some nitro-substituted thiophene-based azo disperse dyes to hydrophobic fibres. Dyes Pigm, 1997, 35(1): 45–55

    Article  CAS  Google Scholar 

  108. Hallas G, Towns AD. Dyes derived from aminothiophenes-Part 3. Application of some disperse dyes derived from 2-aminothiophenes to hydrophobic fibres. Dyes Pigm, 1997, 33(3): 215–228

    Article  CAS  Google Scholar 

  109. El-Shekeil A, Abu-Bakr AO. Dc electrical conductivity of the direct electrochemically synthesized polythiophene metal complexes. J Macromol Sci Part A: Pure Appl Chem, 2011, 48: 233–240

    Article  CAS  Google Scholar 

  110. El-Shekeil A, Al-Khader M, Abu-Bakr AO. Synthesis, characterization and dc electrical conductivity of some oligmer mixed metal complexes. Synth Met, 2004, 143(2): 147–152

    Article  CAS  Google Scholar 

  111. El-Dossoki FI. Electric conductance and semi-empirical studies on two thiophene derivatives/metal cation complexation. J Mol Liq, 2008, 142: 53–56

    Article  CAS  Google Scholar 

  112. Skene WG, Dufresne S, Trefz T, Simard M. (e)-Diethyl 2-amino-5-(2-thienylmethyleneamino)thiophene-3,4-dicarboxylate. Acta Crystallogr, Sect E: Struct Rep Online, 2006, 62(6): o2382–o2384

    Article  CAS  Google Scholar 

  113. Dufresne S, Bourgeaux M, Skene WG. Diethyl 2,5-bis((e)-thiophen-2-ylmethyleneamino)thiophene-3,4-dicarboxylate triad. Acta Crystallogr, Sect E: Struct Rep Online, 2006, 62(12): o5602–o5604

    Article  CAS  Google Scholar 

  114. Wong BM, Cordaro JG. Electronic properties of vinylene-linked heterocyclic conducting polymers: Predictive design and rational guidance from dft calculations. J Phys Chem C, 2011, 115(37): 18333–18341

    Article  CAS  Google Scholar 

  115. Qing F, Sun Y, Wang X, Li N, Li Y, Li X, Wang H. A novel poly(thienylenevinylene) derivative for application in polymer solar cells. Polym Chem, 2011, 2(9): 2102–2106

    Article  CAS  Google Scholar 

  116. Gergely J, Morgan JB, Overman LE. Stereocontrolled synthesis of functionalized cis-cyclopentapyrazolidines by 1,3-dipolar cycloaddition reactions of azomethine imines. J Org Chem, 2006, 71: 9144–9152

    Article  CAS  Google Scholar 

  117. Bourgeaux M, Skene WG. Photophysics and electrochemistry of conjugated oligothiophenes prepared by using azomethine connections. J Org Chem, 2007, 72(23): 8882–8892

    Article  CAS  Google Scholar 

  118. Guarìn SAP, Bourgeaux M, Dufresne S, Skene WG. Photophysical, crystallographic, and electrochemical characterization of symmetric and unsymmetric self-assembled conjugated thiopheno azomethines. J Org Chem, 2007, 72(7): 2631–2643

    Article  CAS  Google Scholar 

  119. Mielke J, Leyssner F, Koch M, Meyer S, Luo Y, Selvanathan S, Haag R, Tegeder P, Grill L. Imine derivatives on Au(111): Evidence for “inverted” thermal isomerization. ACS Nano, 2011, 5(3): 2090–2097

    Article  CAS  Google Scholar 

  120. Luo Y, Utecht M, Dokić J, Korchak S, Vieth H-M, Haag R, Saalfrank P. Cis-trans isomerisation of substituted aromatic imines: A comparative experimental and theoretical study. ChemPhysChem, 2011, 2311–2321

  121. Traven’ V, Ivanov I, Panov A, Safronova O, Chibisova T. Solvent-induced E/Z (C=N)-isomerization of imines of some hydroxy-substituted formylcoumarins. Rus Chem Bull, 2008, 57(9): 1989–1995

    Article  CAS  Google Scholar 

  122. Selli E. Photochemistry of n-benzylideneanilinium cations in concentrated sulfuric acid solutions. J Photochem Photobiol A, 1996, 101(2–3): 185–188

    Article  CAS  Google Scholar 

  123. Geissler G, Fust W, Krüger B, Tomaschewski G. Azomethinimine. Vii. Photochemisches und thermisches verhalten azarylsubstituierter pyrazolidon-(3)-azomethinimine. J Prak Chem, 1983, 325(2): 205–210

    Article  CAS  Google Scholar 

  124. Russegger P. Photoisomerization about carbon-nitrogen double bonds. I. Kinetic and potential energy for ground and excited states of methylenimine. Chem Phys, 1978, 34(3): 329–339

    Article  CAS  Google Scholar 

  125. Traven VF, Miroshnikov VS, Pavlov AS, Ivanov IV, Panov AV, Chibisova TyA. Unusual e/z-isomerization of 7-hydroxy-4-methyl-8-[(9h-fluoren-2-ylimino)methyl]-2h-1-benzopyran-2-one in acetonitrile. Mendeleev Commun, 17(2): 88–89

  126. Dufresne S, Skene WG. Optoelectronic property tailoring of conjugated heterocyclic azomethines-the effect of pyrrole, thiophene and furans. J Phys Org Chem, 2011, 211–221

  127. Roncali J. Conjugated poly(thiophenes): Synthesis, functionalization, and applications. Chem Rev, 1992, 92(4): 711–738

    Article  CAS  Google Scholar 

  128. Lee CK, Yu JS, Lee HJ. Determination of aromaticity indices of thiophene and furan by nuclear magnetic resonance spectroscopic analysis of their phenyl esters. J Heterocyclic Chem, 2002, 39(6): 1207–1217

    Article  CAS  Google Scholar 

  129. Dufresne S, Bolduc A, Skene WG. Towards materials with reversible oxidation and tuneable colours using heterocyclic conjugated azomethines. J Mater Chem, 2010, 20(23): 4861–4866

    Article  CAS  Google Scholar 

  130. Bolduc A, Dufresne S, Skene WG. Edot-containing azomethine: An easily prepared electrochromically active material with tuneable colours. J Mater Chem, 2010, 20(23): 4820–4826

    Article  CAS  Google Scholar 

  131. Dong Y, Navarathne D, Bolduc A, McGregor N, Skene WG. A,α′-n-boc-substituted bi- and terthiophenes: Fluorescent precursors for functional materials. J Org Chem, 2012, 77(22): 5429–5433

    Article  CAS  Google Scholar 

  132. Lakowicz JR. Principles of Fluorescence Spectroscopy. New York: Springer, 2006

    Book  Google Scholar 

  133. Bourgeaux M, Guarin SAP, Skene WG. Photophysical, crystallographic, and electrochemical characterization of novel conjugated thiopheno azomethines. J Mater Chem, 2007, 17(10): 972–979

    Article  CAS  Google Scholar 

  134. Luo Y, Korchak S, Vieth HM, Haag R. Effective reversible photoinduced switching of self-assembled monolayers of functional imines on gold nanoparticles. Chem Phys Chem, 2011, 12(1): 132–135

    Article  CAS  Google Scholar 

  135. Bléger D, Ciesielski A, Samorì P, Hecht S. Photoswitching vertically oriented azobenzene self-assembled monolayers at the solid-liquid interface. Chem Eur J, 2010, 16(48): 14256–14260

    Article  CAS  Google Scholar 

  136. Bourque AN, Dufresne S, Skene WG. Conjugated fluorenes prepared from azomethines connections: The effect of alternating fluorenones and fluorenes on the spectroscopic and electrochemical properties. J Phys Chem C, 2009, 113(45): 19677–19685

    Article  CAS  Google Scholar 

  137. Dufresne S, Skalski T, Skene WG. Insights into the effect of ketylimine, aldimine, and vinylene group attachment and regiosubstitution on the fluorescence deactivation of fluorene. Can J Chem, 2011, 89(2): 173–180

    Article  CAS  Google Scholar 

  138. Dufresne S, Roche IU, Skalski T, Skene WG. Insights into the effect of the ketylimine group on the fluorescence deactivation of oligofluorenes. J Phys Chem C, 2010, 114(30): 13106–13112

    Article  CAS  Google Scholar 

  139. Dufresne S, Bourque AN, Skene WG. (e)-5-(2-Thienylmethyleneamino)quinolin-8-ol. Acta Crystallogr, Sect E: Struct Rep Online, 2008, 64(1): o316

    Article  CAS  Google Scholar 

  140. Skene WG, Dufresne S, Trefz T, Simard M. (e)-Diethyl 2-amino-5-(2-thienylmethyleneamino)thiophene-3,4-dicarboxylate. Acta Crystallogr, Sect E: Struct Rep Online, 2006, E62(6): o2382–o2384

    Article  CAS  Google Scholar 

  141. Dufresne S, Bourgeaux M, Skene WG. Diethyl 2,5-bis[(e)-thiophen-2-ylmethyleneamino]thiophene-3,4-dicarboxylate. Acta Crystallogr, Sect E: Struct Rep Online, 2006, 62(12): o5602–o5604

    Article  CAS  Google Scholar 

  142. Dufresne S, Skene WG. Diethyl 2,5-bis[(1e)-(1h-pyrrol-2-ylmethylidene)amino]thiophene-3,4-dicarboxylate. Acta Crystallogr, Sect E: Struct Rep Online, 2011, 67(9): o2302

    Article  CAS  Google Scholar 

  143. Dufresne S, Skene WG. Diethyl 2-amino-5-[(e)-(1-methyl-1h-pyrrol-2-yl)methylideneamino]thiophene-3,4-dicarboxylate. Acta Crystallogr, Sect E: Struct Rep Online, 2010, 66(12): o3221

    Article  CAS  Google Scholar 

  144. Dufresne S, Skene WG. Diethyl 2-amino-5-[(e)-(furan-2-ylmethylidene)amino]thiophene-3,4-dicarboxylate. Acta Crystallogr, Sect E: Struct Rep Online, 2010, 66(11): o3027

    Article  CAS  Google Scholar 

  145. Dufresne S, Skene WG. Diethyl 2-[(1-methyl-1h-pyrrol-2-yl)methyleneamino]-5-(2-thienylmethyleneamino)thiophene-3,4-dica rboxylate. Acta Crystallogr, Sect E: Struct Rep Online, 2008, 64(5): o782

    Article  CAS  Google Scholar 

  146. Dufresne S, Skene WG. Diethyl 2,5-bis[(e)-2-furylmethyleneamino] thiophene-3,4-dicarboxylate. Acta Crystallogr, Sect E: Struct Rep Online, 2008, 64(4): o710

    Article  CAS  Google Scholar 

  147. Dufresne S, Bolduc A, Skene WG. Diethyl 2,5-bis[(2,3-dihydroth-ieno[3,4-b][1,4]dioxin-5-yl)methylideneamino]thiophene-3,4-dicarbo xylate acetone monosolvate. Acta Crystallogr, Sect E: Struct Rep Online, 2011, 67(12): o3138

    Article  CAS  Google Scholar 

  148. Bourgeaux M, Vomsheid S, Skene WG. Hydrogen-bonded network of diethyl 2,5-diaminothiophene-3,4-dicarboxylate. Acta Crystallogr, Sect E: Struct Rep Online, 2006, 62(12): o5529–o5531

    Article  CAS  Google Scholar 

  149. Ruban G, Zobel D. Crystal structure of trans-1,2-di-2-thienylethene. Acta Crystallogr, Sect B, 1975, B31: 2632–2634

    Article  Google Scholar 

  150. Dogan F, Kaya I, Bilici A. Azomethine-based phenol polymer: Synthesis, characterization and thermal study. Synth Met, 2011, 161(1–2): 79–86

    Article  CAS  Google Scholar 

  151. El-Shekeil AG, Al-Yusufy FA, Saknidy S. Dc conductivity of some polyazomethines. Polym Int, 1997, 42(1): 39–44

    Article  CAS  Google Scholar 

  152. Iwan A, Sek D. Processible polyazomethines and polyketanils: From aerospace to light-emitting diodes and other advanced applications. Prog Polym Sci, 2008, 33(3): 289–345

    Article  CAS  Google Scholar 

  153. Bourgeaux M, Skene WG. A highly conjugated p- and n-type polythiophenoazomethine: Synthesis, spectroscopic, and electrochemical investigation. Macromolecules, 2007, 40(6): 1792–1795

    Article  CAS  Google Scholar 

  154. Hall HKJ, Padias AB, Williams PA, Gosau JM, Boone HW, Park DK. Novel polyaromatic quinone imines. Macromolecules, 1995, 28(1): 1–8

    Article  CAS  Google Scholar 

  155. Bourgeaux M, Skene WG. A highly conjugated p- and n-type polythiophenoazomethine: Synthesis, spectroscopic, and electrochemical investigation. Macromolecules, 2007, 40(6): 1792–1795

    Article  CAS  Google Scholar 

  156. Giuseppone N. Toward self-constructing materials: A systems chemistry approach. Acc Chem Res, 2012, DOI: 10.1021/ar2002655

  157. Rue NM, Sun J, Warmuth R. Polyimine container molecules and nanocapsules. Israel J Chem, 2011, 51(7): 743–768

    Article  CAS  Google Scholar 

  158. Ciesielski A, Samori P. Supramolecular assembly/reassembly processes: Molecular motors and dynamers operating at surfaces. Nanoscale, 2011, 3(4): 1397–1410

    Article  CAS  Google Scholar 

  159. Lehn J. Dynamers: Dynamic molecular and supramolecular polymers. Aust J Chem, 2010, 63(4): 611–623

    Article  CAS  Google Scholar 

  160. Meyer CD, Joiner CS, Stoddart JF. Template-directed synthesis employing reversible imine bond formation. Chem Soc Rev, 2007, 36(11): 1705–1723

    Article  CAS  Google Scholar 

  161. Barik S, Bishop S, Skene WG. Spectroelectrochemical and electrochemical investigation of a highly conjugated all-thiophene polyazomethine. Mater Chem Phys, 2011, 129(1–2): 529–533

    Article  CAS  Google Scholar 

  162. Ryan B, McCann G. Novel sub-ceiling temperature rapid depolymerization-repolymerization reactions of cyanoacrylate polymers. Macromol Rapid Commun, 1996, 17: 217–227

    Article  CAS  Google Scholar 

  163. Wong BM, Cordaro JG. Electronic properties of vinylene-linked heterocyclic conducting polymers: Predictive design and rational guidance from dft calculations. J Phys Chem C, 2011, 115(37): 18333–18341

    Article  CAS  Google Scholar 

  164. Bentkowska H. The effect of factors breaking the siloxane bond on the repolymerization course of siloxanes. I. Effect of hydrogen chloride on cyclic and linear poly(diethylsiloxane). Rocz Chem, 1963, 37: 717–721

    CAS  Google Scholar 

  165. Barik S, Skene WG. Selective chain-end postpolymerization reactions and property tuning of a highly conjugated and all-thiophene polyazomethine. Macromolecules, 2010, 43(24): 10435–10441

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. G. Skene.

Additional information

After completing her B.Sc. degree in Chemistry at the Université de Montréal, BOLDUC Andréanne (left) joined Skene’s group as a M. Sc. student in 2008 and then transferred directly into the Ph.D. program. Her thesis focusses on preparing and examining new conjugated azomethines for different plastic electronic applications. MALLET Charlotte (center) completed her Ph.D. studies in 2010 at the Universitéd’Angers, France. She joined Skene’s group as a postdoctoral fellow in 2011, where she works on conjugated benzothiadiazole derivatives for fluorescence applications. SKENE William (right) is an associate professor at U de M. His research interests are the design, synthesis, and characterization of easily prepared conjugated materials for plastic electronics and the structure-property studies of these materials.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolduc, A., Mallet, C. & Skene, W.G. Survey of recent advances of in the field of π-conjugated heterocyclic azomethines as materials with tuneable properties. Sci. China Chem. 56, 3–23 (2013). https://doi.org/10.1007/s11426-012-4778-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4778-4

Keywords

Navigation