Skip to main content
Log in

Statistical theory for a hydrogen bonding fluid system of A a D d type (IV): Depletion potential between colloid particles

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The depletion potential between two colloid particles immersed in a hydrogen bonding fluid has been investigated by density functional theory. The study is motivated by the wide applications of hydrogen bonding fluids in the field of colloid science, and the effects of relevant factors on the depletion potential and depletion force between colloid particles have been studied. These factors include the size ratio of the colloid particle to the fluid molecule, the bulk density of the fluid, the functionality (the number of proton acceptors a and proton donors d) and hydrogen bonding strength as well as the colloid-fluid interaction energy. By comparing the depletion potential calculated under various conditions, it is shown that the effects of these factors on the depletion potential are very significant, and in particular in regulating the depletion force and its range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asakura S, Oosawa F. On interaction between two bodies immersed in a solution of macromolecules. J Chem Phys, 1954, 22: 1255–1256

    CAS  Google Scholar 

  2. Daoud M, Williams CE. Soft Matter Physics. Berlin Heidelberg: Springer-Verlag, 1999. 87–132

    Google Scholar 

  3. Dinsmore AD, Wong DT, Nelson P, Yodh AG. Hard spheres in vesicles: Curvature-induced forces and particle-induced curvature. Phys Rev Lett, 1998, 80: 409–412

    Article  CAS  Google Scholar 

  4. Zaccarelli E. Colloidal gels: Equilibrium and non-equilibrium routes. J Phys: Condens Matter, 2007, 19: 323101

    Article  Google Scholar 

  5. Yethiraj A. Tunable colloids: Control of colloidal phase transitions with tunable interactions. Soft Matter, 2007, 3: 1099–1115

    Article  CAS  Google Scholar 

  6. Hiemenz PC, Rajagopalan R. Principles of Colloid and Surface Chemistry. New York: Marcel Dekker Inc, 1997. 355–399

    Google Scholar 

  7. Myers D. Surfaces, Interfaces, and Colloids: Principles and Applications. New York: Wiley-VCH, 1999. 214–252

    Book  Google Scholar 

  8. Ben-Naim A. Molecular Theory of Water and Aqueous Solutions. Part I: Understanding Water. Singapore: World Scientific Publishing, 2009. 426–458

    Book  Google Scholar 

  9. Crocker JC, Matteo JA, Dinamore AD, Yodh AG. Entropic attraction and repulsion in binary colloids probed with a line optical tweezer. Phys Rev Lett, 1999, 82: 4352–4355

    Article  CAS  Google Scholar 

  10. Brunner M, Dobnikar J, von Grünberg HH. Direct measurement of three-body interactions amongst charged colloids. Phys Rev Lett, 2004, 92: 078301

    Article  Google Scholar 

  11. Jiang HR, Wada H, Yoshinaga N, Sano M. Manipulation of colloids by a nonequilibrium depletion force in a temperature gradient. Phys Rev Lett, 2009, 102: 208301

    Article  Google Scholar 

  12. Royall CP, Louis AA, Tanaka H. Measuring colloidal interactions with confocal microscopy. J Chem Phys, 2007, 127: 044507

    Article  Google Scholar 

  13. Huang F, Addas K, Ward A, Flynn NT, Velasco E, Hagan MF, Dogic Z, Fraden S. Pair potential of charged colloidal stars. Phys Rev Lett, 2009, 102: 108302

    Article  CAS  Google Scholar 

  14. Biancaniello PL, Anthony JK, Crocker JC. Colloidal interactions and self-assembly using DNA hybridization. Phys Rev Lett, 2005, 94: 058302

    Article  Google Scholar 

  15. Kleshchanok D, Tuinier R, Lang PR. Direct measurements of polymer-induced forces. J Phys: Condens Matter, 2008, 20: 073101

    Article  Google Scholar 

  16. Owen RJ, Crocker JC, Verma R, Yodh AG. Measurement of long-range steric repulsions between microspheres due to an adsorbed polymer. Phys Rev E, 2001, 64: 011401

    Article  CAS  Google Scholar 

  17. Biben T, Bladon P, Frenkel D. Depletion effects in binary hard-sphere fluids. J Phys: Condens Matter, 1996, 8: 10799–10821

    Article  CAS  Google Scholar 

  18. Dickman R, Attard P, Simonian V. Entropic forces in binary hard sphere mixtures: Theory and simulation. J Chem Phys, 1997, 107: 205–213

    Article  CAS  Google Scholar 

  19. Li WH, Ma HR. Depletion potential near curved surfaces. Phys Rev E, 2002, 66: 061407

    Article  Google Scholar 

  20. Attard P. Spherically inhomogeneous fluids. II. Hard-sphere solute in a hard-sphere solvent. J Chem Phys, 1989, 91: 3083–3089

    Article  CAS  Google Scholar 

  21. Dzubiella J, Löwen H, Likos CN. Depletion forces in nonequilibrium. Phys Rev Lett, 2003, 91: 248301

    Article  CAS  Google Scholar 

  22. von Grünberg HH, Klein R. Density functional theory of nonuniform colloidal suspensions: 3D density distributions and depletion forces. J Chem Phys, 1999, 110: 5421–5431

    Article  Google Scholar 

  23. Götzelmann B, Evans R, Dietrich S. Depletion forces in fluids. Phys Rev E, 1998, 57: 6785–6800

    Article  Google Scholar 

  24. Melchionna S, Hansen JP. Triplet depletion forces from density functional optimization. Phys Chem Chem Phys, 2000, 2: 3465–3471

    Article  CAS  Google Scholar 

  25. Goulding D, Melchionna S. Accurate calculation of three-body depletion interactions. Phys Rev E, 2001, 64: 011403

    Article  CAS  Google Scholar 

  26. Roth R, Evans R, Dietrich S. Depletion potential in hard-sphere mixtures: Theory and applications. Phys Rev E, 2000, 62: 5360–5377

    Article  CAS  Google Scholar 

  27. Coleman MM, Painter PC. Hydrogen bonded polymer blends. Prog Polym Sci, 1995, 20: 1–59

    Article  CAS  Google Scholar 

  28. Wang LY, Cui SX, Wang ZQ, Zhang X, Jiang M, Chi LF, Fuchs H. Multilayer assemblies of copolymer PSOH and PVP on the basis of hydrogen bonding. Langmuir, 2000, 16: 10490–10494

    Article  CAS  Google Scholar 

  29. Jeffrey GA. An Introduction to Hydrogen Bonding. Oxford: Oxford University Press, 1997. 184–202

    Google Scholar 

  30. Wang HJ, Hong XZ, Ba XW. Sol-gel transition in nonlinear hydro gen bonding solutions. Macromolecules, 2007, 40: 5593–5598

    Article  CAS  Google Scholar 

  31. Panayiotou C, Sanchez IC. Hydrogen bonding in fluids: An equation-of-state approach. J Phys Chem, 1991, 95: 10090–10097

    Article  CAS  Google Scholar 

  32. Wang HJ, Hong XZ, Gu F, Ba XW. Statistical theory for hydrogen bonding fluid system of AaDd type (I): The geometrical phase transition. Sci China Chem, 2006, 49: 499–506

    Article  CAS  Google Scholar 

  33. Evans R. The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids. Adv Phys, 1979, 28: 143–200

    Article  CAS  Google Scholar 

  34. Ramakrishnan TV, Yussouff M. First-principles order-parameter theory of freezing. Phys Rev B, 1979, 19: 2775–2794

    Article  CAS  Google Scholar 

  35. Rosenfeld Y. Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing. Phys Rev Lett, 1989, 63: 980–983

    Article  CAS  Google Scholar 

  36. Yu YX, Wu JZ. Structures of hard-sphere fluids from a modified fundamental-measure theory. J Chem Phys, 2002, 117: 10156–10164

    Article  CAS  Google Scholar 

  37. Roth R, Evans R, Lang A, Kahl G. Fundamental measure theory for hard-sphere mixtures revisited: The White Bear version. J Phys: Condens Matter, 2002, 14: 12063–12078

    Article  CAS  Google Scholar 

  38. Yu YX, Wu JZ. A fundamental-measure theory for inhomogeneous associating fluids. J Chem Phys, 2002, 116: 7094–7103

    Article  CAS  Google Scholar 

  39. Carnahan NF, Starling KE. Equation of state for nonattracting rigid spheres. J Chem Phys, 1969, 51: 635–636

    Article  CAS  Google Scholar 

  40. Segura CJ, Chapman WG, Shukla KP. Associating fluids with four bonding sites against a hard wall: Density functional theory. Mol Phys, 1997, 90: 759–771

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, F., Wang, H. & Li, J. Statistical theory for a hydrogen bonding fluid system of A a D d type (IV): Depletion potential between colloid particles. Sci. China Chem. 55, 1160–1166 (2012). https://doi.org/10.1007/s11426-012-4608-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4608-8

Keywords

Navigation