Skip to main content

Advertisement

Log in

Discovering the major metabolites of the three novel fentanyl analogues 3-methylcrotonylfentanyl, furanylbenzylfentanyl, and 4-fluorocyclopropylbenzylfentanyl for forensic case work

  • Original Article
  • Published:
Forensic Toxicology Aims and scope Submit manuscript

Abstract

Purpose

The highly potent opioid analgesic fentanyl and its analogues are involved in an increasing number of overdose deaths worldwide. New fentanyl analogues are continuously emerging, and there is a lack of knowledge concerning the metabolism of these compounds. The determination of fentanyl analogues can be challenging due to their low circulating concentrations and rapid and extensive metabolism, making metabolite identification necessary for confirming drug intake. The aim of this study was to discover and elucidate the structures of the major metabolites of the three novel fentanyl analogues 3-methylcrotonylfentanyl (3-MCF), furanylbenzylfentanyl (FBF), and 4-fluorocyclopropylbenzylfentanyl (4-FCBF), which were all seized at European borders in 2018.

Methods

3-MCF, FBF, or 4-FCBF was incubated with human liver microsomes and human hepatocytes for up to 4 h. The metabolites formed were separated by ultra-high-performance liquid chromatography using an octadecyl silica column employing solvent gradient elution with a mobile phase consisting of ammonium formate and methanol. The compounds were detected by quadrupole time-of-flight mass spectrometry.

Results

The major metabolites of 3-MCF were formed by N-dealkylation, carboxylation, oxidation, or hydroxylation of the 3-methyl-2-butene, and hydroxylation of both the 3-methyl-2-butene and the piperidine ring. FBF was metabolized through N-dealkylation, amide hydrolysis with/without subsequent hydroxylation at the N-phenyl, and dihydrodiol formation at the furan ring. 4-FCBF metabolism was dominated by N-dealkylation and N-oxidation at the piperidine ring.

Conclusions

In the present study, we successfully discovered and elucidated the structures of the major metabolites of 3-MCF, FBF, and 4-FCBF which could be used as markers to confirm intake of these compounds in forensic case work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) (2019) European Drug Report 2019: trends and developments. https://doi.org/10.2810/191370. Accessed 5 Feb 2020

  2. United Nations Office on Drugs and Crime (UNODC) (2019) World Drug Report 2019 (United Nations publication, Sales No. E.19.XI.8). https://wdr.unodc.org/wdr2019/prelaunch/WDR19_Booklet_3_DEPRESSANTS.pdf. Accessed 5 Feb 2020

  3. European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) (2018) European Drug Report 2018: trends and developments. https://doi.org/10.2810/800331. Accessed 5 Feb 2020

  4. National insitute of drug abuse (NIDA) (2019) Overdose death rates. https://www.drugabuse.gov/related-topics/trends-statistics/overdose-death-rates. Accessed 6 Nov 2019

  5. Mounteney J, Giraudon I, Denissov G, Griffiths P (2015) Fentanyls: are we missing the signs? Highly potent and on the rise in Europe. Int J Drug Policy 26:626–631. https://doi.org/10.1016/j.drugpo.2015.04.003

    Article  PubMed  Google Scholar 

  6. The Swedish Police (2018) Swedish National Threat Assessment on fentanyl analogues and other synthetic opioids. https://polisen.se/siteassets/dokument/ovriga_rapporter/nationell-lagesbild_fentanylanaloger.pdf. Accessed 5 Feb 2020

  7. European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) (2018) Estonia Drug Report 2018. https://www.emcdda.europa.eu/system/files/publications/11304/estonia-cdr-2018-with-numbers.pdf. Accessed 14 Oct 2020

  8. Armenian P, Vo KT, Barr-Walker J, Lynch KL (2018) Fentanyl, fentanyl analogs and novel synthetic opioids: a comprehensive review. Neuropharmacology 134:121–132. https://doi.org/10.1016/j.neuropharm.2017.10.016

    Article  CAS  PubMed  Google Scholar 

  9. Drug Enforcement Administration (DEA), US Department of Justice (2016) DEA Issues Carfentanil Warning To Police And Public. https://www.dea.gov/press-releases/2016/09/22/dea-issues-carfentanil-warning-police-and-public. Accessed 5 Feb 2020

  10. Ciccarone D (2017) Fentanyl in the US heroin supply: a rapidly changing risk environment. Int J Drug Policy 46:107–111. https://doi.org/10.1016/j.drugpo.2017.06.010

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jannetto PJ, Helander A, Garg U, Janis GC, Goldberger B, Ketha H (2019) The fentanyl epidemic and evolution of fentanyl analogs in the United States and the European Union. Clin Chem 65:242–253. https://doi.org/10.1373/clinchem.2017.281626

    Article  CAS  PubMed  Google Scholar 

  12. Prekupec MP, Mansky PA, Baumann MH (2017) Misuse of novel synthetic opioids: a deadly new trend. J Addict Med 11:256–265. https://doi.org/10.1097/adm.0000000000000324

    Article  PubMed  PubMed Central  Google Scholar 

  13. United Nations Office on Drugs and Crime (UNODC) (2019) New Synthetic Opioids (NSO): the third wave of new psychoactive substances, Global SMART Update Volume 21, March 2019. https://www.unodc.org/documents/scientific/Global_SMART_21_web_new.pdf. Accessed 5 Feb 2020

  14. The Lovdata Foundation (2017) Forskrift om endring i forskrift om narkotika. https://lovdata.no/dokument/LTI/forskrift/2017-11-09-1745. Accessed 5 Feb 2020

  15. United States Drug Enforcement Administration (US DEA), Department of Justice (2018) Schedules of controlled substances:temporary placement of fentanyl-related substances in schedule I. Temporary amendment; temporary scheduling order Federal register, vol 83, p 5188–5192

  16. Danish Medicines Agency (2019) Bekendtgørelse om euforiserende stoffer. https://www.retsinformation.dk/Forms/R0710.aspx?id=137169. Accessed 13 Jan 2019

  17. Finnish Government (2018) Growing amount of psychoactive substances are synthetic opioids—an amendment to the Government Decree on Narcotics will bring new substances under narcotics control. https://valtioneuvosto.fi/en/article/-/asset_publisher/1271139/muuntohuumeissa-entista-enemman-synteettisia-opioideja-huumausaineasetuksen-muutos-tuo-uusia-aineita-valvontaan. Accessed 5 Feb 2020

  18. Swedish Riksdag (2019) Förordning (1992:1554) om kontroll av narkotika. https://www.riksdagen.se/sv/dokument-lagar/dokument/svensk-forfattningssamling/forordning-19921554-om-kontroll-av-narkotika_sfs-1992-1554. Accessed 13 Jan 2019

  19. Roda G, Faggiani F, Bolchi C, Pallavicini M, Cas MD (2019) Ten years of fentanyl-like drugs: a technical-analytical review. Anal Sci 35:479–491. https://doi.org/10.2116/analsci.18R004

    Article  CAS  PubMed  Google Scholar 

  20. Shanks KG, Behonick GS (2017) Detection of carfentanil by LC-MS-MS and reports of associated fatalities in the USA. J Anal Toxicol 41:466–472. https://doi.org/10.1093/jat/bkx042

    Article  CAS  PubMed  Google Scholar 

  21. Tabarra I, Soares S, Rosado T, Goncalves J, Luis A, Malaca S, Barroso M, Keller T, Restolho J, Gallardo E (2019) Novel synthetic opioids—toxicological aspects and analysis. Forensic Sci Res 4:111–140. https://doi.org/10.1080/20961790.2019.1588933

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pérez-Mañá C, Papaseit E, Fonseca F, Farré A, Torrens M, Farré M (2018) Drug interactions with new synthetic opioids. Front Pharmacol 9:1145. https://doi.org/10.3389/fphar.2018.01145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wilde M, Pichini S, Pacifici R, Tagliabracci A, Busardò FP, Auwärter V, Solimini R (2019) Metabolic pathways and potencies of new fentanyl analogs. Front Pharmacol 10:238. https://doi.org/10.3389/fphar.2019.00238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Richeval C, Baillieux M, Pawlak G, Phanithavong M, Wiart J-f, Humbert L, Batisse A, Lamoureux C, Pfau G, Nefau T, Allorge D, Gaulier J-M (2019) Benzoylfentanyl and parafluorobutyrfentanyl: some analytical and metabolism data. Toxicol Anal Clin 31:258–267. https://doi.org/10.1016/j.toxac.2019.01.004

    Article  Google Scholar 

  25. Allibe N, Richeval C, Phanithavong M, Faure A, Allorge D, Paysant F, Stanke-Labesque F, Eysseric-Guerin H, Gaulier JM (2017) Fatality involving ocfentanil documented by identification of metabolites. Drug Test Anal 10:995–1000. https://doi.org/10.1002/dta.2326

    Article  CAS  PubMed  Google Scholar 

  26. Krotulski AJ, Mohr ALA, Papsun DM, Logan BK (2017) Metabolism of novel opioid agonists U-47700 and U-49900 using human liver microsomes with confirmation in authentic urine specimens from drug users. Drug Test Anal 10:127–136. https://doi.org/10.1002/dta.2228

    Article  CAS  PubMed  Google Scholar 

  27. Iula DM (2017)What Do We Know about the Metabolism of the New Fentanyl Derivatives? https://www.caymanchem.com/news/what-do-we-know-about-the-metabolism-of-the-new-fentanyl-derivative. Accessed 5 Feb 2020

  28. Klingberg J, Cawley A, Shimmon R, Fu S (2019) Collision-induced dissociation studies of synthetic opioids for non-targeted analysis. Front Chem 7:331–331. https://doi.org/10.3389/fchem.2019.00331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fitch WL, Khojasteh C, Aliagas I, Johnson K (2018) Using LC retention times in organic structure determination: drug metabolite identification. Drug Metab Lett 12:93–100. https://doi.org/10.2174/1872312812666180802093347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Steuer AE, Williner E, Staeheli S, Kraemer T (2016) Studies on the metabolism of the fentanyl-derived designer drug butyrfentanyl in human in vitro liver preparations and authentic human samples using liquid chromatography-high resolution mass spectrometry (LC-HRMS). Drug Test Anal 9:1085–1092. https://doi.org/10.1002/dta.2111

    Article  CAS  PubMed  Google Scholar 

  31. Kanamori T, Segawa H, Yamamuro T, Kuwayama K, Tsujikawa K, Iwata YT (2019) Metabolism of a new synthetic opioid tetrahydrofuranylfentanyl in fresh isolated human hepatocytes: detection and confirmation of ring-opened metabolites. Drug Test Anal 12:439-448. https://doi.org/10.1002/dta.2743

    Article  CAS  Google Scholar 

  32. Vikingsson S, Rautio T, Wallgren J, Astrand A, Watanabe S, Dahlen J, Wohlfarth A, Konradsson P, Wu X, Kronstrand R, Green H (2019) LC-QTOF-MS identification of major urinary cyclopropylfentanyl metabolites using synthesized standards. J Anal Toxicol 43:607–614. https://doi.org/10.1093/jat/bkz057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bergh MS, Bogen IL, Wohlfarth A, Wilson SR, Øiestad ÅML (2019) Distinguishing between cyclopropylfentanyl and crotonylfentanyl by methods commonly available in the forensic laboratory. Ther Drug Monit 41:519–527. https://doi.org/10.1097/ftd.0000000000000617

    Article  CAS  PubMed  Google Scholar 

  34. Peterson LA (2013) Reactive metabolites in the biotransformation of molecules containing a furan ring. Chem Res Toxicol 26:6–25. https://doi.org/10.1021/tx3003824

    Article  CAS  PubMed  Google Scholar 

  35. Watanabe S, Vikingsson S, Roman M, Green H, Kronstrand R, Wohlfarth A (2017) In vitro and in vivo metabolite identification studies for the new synthetic opioids acetylfentanyl, acrylfentanyl, furanylfentanyl, and 4-fluoro-isobutyrylfentanyl. AAPS J 19:1102–1122. https://doi.org/10.1208/s12248-017-0070-z

    Article  CAS  PubMed  Google Scholar 

  36. Richeval C, Gicquel T, Hugbart C, Le Dare B, Allorge D, Morel I, Gaulier JM (2017) In vitro characterization of NPS metabolites produced by human liver microsomes and the HepaRG cell line using liquid chromatographyhigh resolution mass spectrometry (LC-HRMS) analysis: application to furanyl fentanyl. Curr Pharm Biotechnol 18:806–814. https://doi.org/10.2174/1389201018666171122124401

    Article  CAS  PubMed  Google Scholar 

  37. Casale JF, Mallette JR, Gennesis C, Hays PA (2018) Synthesis and characterization of benzoylfentanyl and benzoylbenzylfentanyl. Microgram J 15:1–4

    CAS  Google Scholar 

  38. Gundersen POM, Astrand A, Green H, Josefsson M, Spigset O, Vikingsson S (2019) Metabolite profiling of ortho-, meta- and para-fluorofentanyl by hepatocytes and high-resolution mass spectrometry. J Anal Toxicol 44:140–148. https://doi.org/10.1093/jat/bkz081

    Article  CAS  PubMed Central  Google Scholar 

  39. Feasel MG, Wohlfarth A, Nilles JM, Pang S, Kristovich RL, Huestis MA (2016) Metabolism of carfentanil, an ultra-potent opioid, in human liver microsomes and human hepatocytes by high-resolution mass spectrometry. AAPS J 18:1489–1499. https://doi.org/10.1208/s12248-016-9963-5

    Article  CAS  PubMed  Google Scholar 

  40. Smith DA, Allerton C, Kalgutkar AS, van de Waterbeemd H, Walker DK (2012) Pharmacokinetics and metabolism in drug design. Wiley-VCH, Weinheim

    Book  Google Scholar 

  41. Allibe N, Sam-Lai NF, Willeman T, Jourdil J, Bartoli M, Mallaret M, Nemoz B, Stanke-Labesque F, Eysseric-Guerin H (2019) Norcarfentanil: carfentanil misuse or remifentanil treatment? Forensic Toxicol 37:488–495. https://doi.org/10.1007/s11419-019-00481-2

    Article  CAS  Google Scholar 

  42. Meyer MR, Dinger J, Schwaninger AE, Wissenbach DK, Zapp J, Fritschi G, Maurer HH (2012) Qualitative studies on the metabolism and the toxicological detection of the fentanyl-derived designer drugs 3-methylfentanyl and isofentanyl in rats using liquid chromatography-linear ion trap-mass spectrometry (LC-MS(n)). Anal Bioanal Chem 402:1249–1255. https://doi.org/10.1007/s00216-011-5528-8

    Article  CAS  PubMed  Google Scholar 

  43. Mardal M, Johansen SS, Davidsen AB, Telving R, Jornil JR, Dalsgaard PW, Hasselstrom JB, Øiestad ÅM, Linnet K, Andreasen MF (2018) Postmortem analysis of three methoxyacetylfentanyl-related deaths in Denmark and in vitro metabolite profiling in pooled human hepatocytes. Forensic Sci Int 290:310–317. https://doi.org/10.1016/j.forsciint.2018.07.020

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianne Skov-Skov Bergh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The article does not contain any studies with human participants or animals performed by any authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 586 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergh, M.SS., Bogen, I.L., Nerem, E. et al. Discovering the major metabolites of the three novel fentanyl analogues 3-methylcrotonylfentanyl, furanylbenzylfentanyl, and 4-fluorocyclopropylbenzylfentanyl for forensic case work. Forensic Toxicol 39, 167–178 (2021). https://doi.org/10.1007/s11419-020-00560-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11419-020-00560-9

Keywords

Navigation