Skip to main content
Log in

Mass spectrometric characterization of carfentanil metabolism in human, dog, and rat lung microsomes via comparison to chemically synthesized metabolite standards

  • Original Article
  • Published:
Forensic Toxicology Aims and scope Submit manuscript

Abstract

Purpose

The metabolism of carfentanil was assessed using human, dog, and rat pulmonary microsomes. Mass spectrometry based analysis allowed for metabolite identification and species differentiation. Participation of different metabolic enzymes in carfentanil biotransformation was also assessed.

Methods

Metabolite profiling was accomplished by incubating 10 µM carfentanil in human, dog, and rat lung microsomes. The metabolites were separated and analyzed by ultra-high performance liquid chromatography/high-resolution mass spectrometry.

Results

In total, 18 metabolites were detected. Nine metabolites were authentically identified through comparison to synthesized reference standards. In human lung microsomes, nine metabolites were identified. In dog lung microsomes, 15 metabolites were identified with three being dog specific. In rat lung microsomes, 15 metabolites were identified and two were rat specific. Proposed metabolic pathways included N-dealkylation, monohydroxylation, dihydroxylation, N-oxidation of piperidine ring nitrogen, and ketone formation. Participation of enzymes CYP2B6, CYP2E1, CYP2J2, and CYP3A4/5 to carfentanil metabolism was suggested by selective enzymatic inhibition.

Conclusions

The pulmonary clearance in human lung microsomes was lower than the previously reported hepatic metabolism suggesting organ specific metabolic rates. The contribution of multiple cytochrome P450 enzymes to human, dog, and rat pulmonary microsomal carfentanil biotransformation varied between species. The identified metabolites may provide useful markers for possible forensic and clinical determination of the mode of ingestion but the use of dog and rat animal models was not indicated. To our knowledge, this is the first reported use of chemically synthesized reference standards for the unequivocal identification of lung carfentanil metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lust EB, Barthold C, Malesker MA, Wichman TO (2011) Human health hazards of veterinary medications: information for emergency departments. J Emerg Med 40:198–207. https://doi.org/10.1016/j.jemermed.2009.09.026

    Article  PubMed  Google Scholar 

  2. Shafer SL (2019) Carfentanil: a weapon of mass destruction. Can J Anesth 66:351–355. https://doi.org/10.1007/s12630-019-01295-x

    Article  PubMed  Google Scholar 

  3. Leen JLS, Juurlink DN (2019) Carfentanil: a narrative review of its pharmacology and public health concerns. Can J Anesth 66:414–421. https://doi.org/10.1007/s12630-019-01294-y

    Article  PubMed  Google Scholar 

  4. Haigh JC, Lee LJ, Schweinsburg RE (1983) Immobilization of polar bears with carfentanil. J Wildl Dis 19:140–144. https://doi.org/10.7589/0090-3558-19.2.140

    Article  CAS  PubMed  Google Scholar 

  5. Schumacher J, Heard DJ, Young L, Citino SB (1997) Cardiopulmonary effects of carfentanil in dama gazelles (Gazella dama). J Zoo Wildl Med 28:166–170

    CAS  PubMed  Google Scholar 

  6. Neumann G, Erhardt W, Oberhuber B, Fritsch R, Blümel G (1980) A new highly potent and short-acting analgesic, carfentanil (R33799), in combination with the hypnotic agent, etomidat (R26490), as a method of anaesthesia in guinea-pigs. Res Exp Med 177:135–143. https://doi.org/10.1007/bf01851842

    Article  CAS  Google Scholar 

  7. Mutlow A, Isaza R, Carpenter JW, Koch DE, Hunter RP (2004) Pharmacokinetics of carfentanil and naltrexone in domestic goats (Capra hircus). J Zoo Wildl Med 35:489–496. https://doi.org/10.1638/03-074

    Article  PubMed  Google Scholar 

  8. Cole A, Mutlow A, Isaza R, Carpenter JW, Koch DE, Hunter RP, Dresser BL (2006) Pharmacokinetics and pharmacodynamics of carfentanil and naltrexone in female common eland (Taurotragus oryx). J Zoo Wildl Med 37:318–326. https://doi.org/10.1638/05-070.1

    Article  PubMed  Google Scholar 

  9. Uddayasankar U, Lee C, Oleschuk C, Eschun G, Ariano RE (2018) The pharmacokinetics and pharmacodynamics of carfentanil after recreational exposure: a case report. Pharmacotherapy 38:e41–e45. https://doi.org/10.1002/phar.2117

    Article  PubMed  Google Scholar 

  10. Rabiner EA, Beaver J, Makwana A, Searle G, Long C, Nathan PJ, Newbould RD, Howard J, Miller SR, Bush MA, Hill S, Reiley R, Passchier J, Gunn RN, Matthews PM, Bullmore ET (2011) Pharmacological differentiation of opioid receptor antagonists by molecular and functional imaging of target occupancy and food reward-related brain activation in humans. Mol Psychiatry 16:826–835. https://doi.org/10.1038/mp.2011.29(open access article)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Eriksson O, Antoni G (2015) [11C] Carfentanil binds preferentially to μ-opioid receptor subtype 1 compared to subtype 2. Mol Imaging 14:476–483. https://doi.org/10.2310/7290.2015.00019(open access article)

    Article  CAS  PubMed  Google Scholar 

  12. Heinz A, Reimold M, Wrase J, Hermann D, Croissant B, Mundle G, Dohmen BM, Braus DH, Schumann G, Machulla HJ, Bares R, Mann K (2005) Correlation of stable elevations in striatal mu-opioid receptor availability in detoxified alcoholic patients with alcohol craving—a positron emission tomography study using carbon 11-labeled carfentanil. Arch Gen Psychiatry 62:57–64. https://doi.org/10.1001/archpsyc.62.1.57

    Article  PubMed  Google Scholar 

  13. Reimold M, Hermann D, Reischl G, Smolka M, Batra A, Rietschel M, Kiefer F, Heinz A, Bares R, Mann K (2010) Reduced mu-opiate receptor availability in a genetic variant of the mu-opiate receptor (A118G): a [11C] carfentanil PET study. J Nucl Med 51(Suppl. 2):49 (only abstract available)

    Google Scholar 

  14. Weltrowska G, Lemieux C, Chung NN, Guo JJ, Wilkes BC, Schiller PW (2014) 'Carba'-carfentanil (trans isomer): a µ-opioid receptor (MOR) partial agonist with a distinct binding mode. Bioorg Med Chem 22:4581–4586. https://doi.org/10.1016/j.bmc.2014.07.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Riches JR, Read RW, Black RM, Cooper NJ, Timperley CM (2012) Analysis of clothing and urine from Moscow theatre siege casualties reveals carfentanil and remifentanil use. J Anal Toxicol 36:647–656. https://doi.org/10.1093/jat/bks078(open access article)

    Article  CAS  PubMed  Google Scholar 

  16. Wax PM, Becker CE, Curry SC (2003) Unexpected "gas" casualties in Moscow: a medical toxicology perspective. Ann Emerg Med 41:700–705. https://doi.org/10.1067/mem.2003.148

    Article  PubMed  Google Scholar 

  17. Tiscione NB, Alford I (2018) Carfentanil in impaired driving cases and the importance of drug seizure data. J Anal Toxicol 42:476–484. https://doi.org/10.1093/jat/bky026(open access article)

    Article  CAS  PubMed  Google Scholar 

  18. Misailidi N, Papoutsis I, Nikolaou P, Dona A, Spiliopoulou C, Athanaselis S (2018) Fentanyls continue to replace heroin in the drug arena: the cases of ocfentanil and carfentanil. Forensic Toxicol 36:12–32. https://doi.org/10.1007/s11419-017-0379-4

    Article  CAS  PubMed  Google Scholar 

  19. Raffa RB, Pergolizzi JV Jr, LeQuang JA, Taylor R Jr, On behalf of NEMA Research Group, Colucci S, Annabi MH (2018) The fentanyl family: a distinguished medical history tainted by abuse. J Clin Pharm Ther 43:154–158. https://doi.org/10.1111/jcpt.12640(open access article)

    Article  CAS  PubMed  Google Scholar 

  20. Elliott SP, Lopez EH (2018) A series of deaths involving carfentanil in the UK and associated post-mortem blood concentrations. J Anal Toxicol 42:e41–e45. https://doi.org/10.1093/jat/bkx109(open access article)

    Article  CAS  PubMed  Google Scholar 

  21. Olsson B, Bondesson E, Borgström L, Edsbäcker S, Eirefelt S, Ekelund K, Gustavsson L, Hegelund-Myrbäck T (2011) Pulmonary drug metabolism, clearance, and absorption. In: Smyth HDC, Hickey AJ (eds) Controlled pulmonary drug delivery. Springer, New York

    Google Scholar 

  22. Boer F (2003) Drug handling by the lungs. Br J Anaesth 91:50–60. https://doi.org/10.1093/bja/aeg117(open access article)

    Article  CAS  PubMed  Google Scholar 

  23. Thum T, Erpenbeck VJ, Moeller J, Hohlfeld JM, Krug N, Borlak J (2006) Expression of xenobiotic metabolizing enzymes in different lung compartments of smokers and nonsmokers. Environ Health Perspect 114:1655–1661. https://doi.org/10.1289/ehp.8861(open access article)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Castell JV, Donato MT, Gómez-Lechón MJ (2005) Metabolism and bioactivation of toxicants in the lung. The in vitro cellular approach. Exp Toxicol Pathol 57:189–204. https://doi.org/10.1016/j.etp.2005.05.008

    Article  CAS  PubMed  Google Scholar 

  25. Hukkanen J, Pelkonen O, Hakkola J, Raunio H (2002) Expression and regulation of xenobiotic-metabolizing cytochrome P450 (CYP) enzymes in human lung. Crit Rev Toxicol 32:391–411. https://doi.org/10.1080/20024091064273

    Article  CAS  PubMed  Google Scholar 

  26. Nhamburo PT, Gonzalez FJ, McBride OW, Gelboin HV, Kimura S (1989) Identification of a new P450 expressed in human lung: complete cDNA sequence, cDNA-directed expression, and chromosome mapping. Biochemistry 28:8060–8066. https://doi.org/10.1021/bi00446a014

    Article  CAS  PubMed  Google Scholar 

  27. Feasel MG, Wohlfarth A, Nilles JM, Pang SK, Kristovich RL, Huestis MA (2016) Metabolism of carfentanil, an ultra-potent opioid, in human liver microsomes and human hepatocytes by high-resolution mass spectrometry. AAPS J 18:1489–1499. https://doi.org/10.1208/s12248-016-9963-5

    Article  CAS  PubMed  Google Scholar 

  28. Martignoni M, Groothuis GMM, de Kanter R (2006) Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol 2:875–894. https://doi.org/10.1517/17425255.2.6.875

    Article  CAS  PubMed  Google Scholar 

  29. Hsu F-L, Walz AJ, Myslinski JM, Kong L, Feasel MG, Goralski TDP, Rose T, Cooper NJ, Roughley N, Timperley CM (2019) Synthesis and μ-opioid activity of the primary metabolites of carfentanil. ACS Med Chem Lett 10:1568–1572. https://doi.org/10.1021/acsmedchemlett.9b00404

    Article  CAS  PubMed  Google Scholar 

  30. Raunio H, Hakkola J, Hukkanen J, Lassila A, Päivärinta K, Pelkonen O, Anttila S, Piipari R, Boobis A, Edwards RJ (1999) Expression of xenobiotic-metabolizing CYPs in human pulmonary tissue. Exp Toxicol Pathol 51:412–417. https://doi.org/10.1016/s0940-2993(99)80031-1

    Article  CAS  PubMed  Google Scholar 

  31. Turpeinen M, Tolonen A, Uusitalo J, Jalonen J, Pelkonen O, Laine K (2005) Effect of clopidogrel and ticlopidine on cytochrome P450 2B6 activity as measured by bupropion hydroxylation. Clin Pharmacol Ther 77:553–559. https://doi.org/10.1016/j.clpt.2005.02.010

    Article  CAS  PubMed  Google Scholar 

  32. Walsky RL, Astuccio AV, Obach RS (2006) Evaluation of 227 drugs for in vitro inhibition of cytochrome P450 2B6. J Clin Pharmacol 46:1426–1438. https://doi.org/10.1177/0091270006293753

    Article  CAS  PubMed  Google Scholar 

  33. Eagling VA, Tjia JF, Back DJ (1998) Differential selectivity of cytochrome P450 inhibitors against probe substrates in human and rat liver microsomes. Br J Clin Pharmacol 45:107–114. https://doi.org/10.1046/j.1365-2125.1998.00679.x(open access article)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ren S, Zeng J, Mei Y, Zhang JZH, Yan SF, Fei J, Chen L (2013) Discovery and characterization of novel, potent, and selective cytochrome P450 2J2 inhibitors. Drug Metab Dispos 41:60–71. https://doi.org/10.1124/dmd.112.048264

    Article  CAS  PubMed  Google Scholar 

  35. Patki KC, von Moltke LL, Greenblatt DJ (2003) In vitro metabolism of midazolam, triazolam, nifedipine, and testosterone by human liver microsomes and recombinant cytochromes P450: role of CYP3A4 and CYP3A5. Drug Metab Dispos 31:938–944. https://doi.org/10.1124/dmd.31.7.938

    Article  CAS  PubMed  Google Scholar 

  36. Cashman JR, Park SB, Yang ZC, Wrighton SA, Jacob P III, Benowitz NL (1992) Metabolism of nicotine by human liver microsomes: stereoselective formation of trans-nicotine N'-oxide. Chem Res Toxicol 5:639–646. https://doi.org/10.1021/tx00029a008

    Article  CAS  PubMed  Google Scholar 

  37. Pelkonen O, Turpeinen M, Uusitalo J, Rautio A, Raunio H (2005) Prediction of drug metabolism and interactions on the basis of in vitro investigations. Basic Clin Pharmacol Toxicol 96:167–175. https://doi.org/10.1111/j.1742-7843.2005.pto960305.x(open access article)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the Defense Threat Reduction Agency (DTRA) under Project number CB3662.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Kong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1387 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, L., Walz, A.J. Mass spectrometric characterization of carfentanil metabolism in human, dog, and rat lung microsomes via comparison to chemically synthesized metabolite standards. Forensic Toxicol 38, 352–364 (2020). https://doi.org/10.1007/s11419-019-00521-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11419-019-00521-x

Keywords

Navigation