Skip to main content

Advertisement

Log in

Biochar for crop production: potential benefits and risks

  • Biochar for a Sustainable Environment
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Biochar, the by-product of thermal decomposition of organic materials in an oxygen-limited environment, is increasingly being investigated due to its potential benefits for soil health, crop yield, carbon (C) sequestration, and greenhouse gas (GHG) mitigation.

Materials and methods

In this review, we discuss the potential role of biochar for improving crop yields and decreasing the emission of greenhouse gases, along with the potential risks involved with biochar application and strategies to avoid these risks.

Results and discussion

Biochar soil amendment improves crop productivity mainly by increasing nutrient use efficiency and water holding capacity. However, improvements to crop production are often recorded in highly degraded and nutrient-poor soils, while its application to fertile and healthy soils does not always increase crop yield. Since biochars are produced from a variety of feedstocks, certain contaminants can be present. Heavy metals in biochar may affect plant growth as well as rhizosphere microbial and faunal communities and functions. Biochar manufacturers should get certification that their products meet International Biochar Initiative (IBI) quality standards (basic utility properties, toxicant assessment, advanced analysis, and soil enhancement properties).

Conclusions

The long-term effects of biochar on soil functions and its fate in different soil types require immediate attention. Biochar may change the soil biological community composition and abundance and retain the pesticides applied. As a consequence, weed control in biochar-amended soils may be difficult as preemergence herbicides may become less effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abel S, Peters A, Trinks S, Schonsky H, Facklam M, Wessolek G (2013) Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 202:183–191

    Article  Google Scholar 

  • Abiven S, Hengartner P, Schneider MPW, Singh N, Schmidt MWI (2011) Pyrogenic carbon soluble fraction is larger and more aromatic in aged charcoal than in fresh charcoal. Soil Biol Biochem 43:1615–1617

    Article  CAS  Google Scholar 

  • Abiven S, Schmidt MWI, Lehmann J (2014) Biochar by design. Nat Geosci 7:326–327

    Article  CAS  Google Scholar 

  • Aguilar-Chávez Á, Díaz-Rojas M, del Rosario M, Cárdenas-Aquino DL, Luna-Guido M (2012) Greenhouse gas emissions from a wastewater sludge-amended soil cultivated with wheat (Triticum spp. L.) as affected by different application rates of charcoal. Soil Biol Biochem 52:90–95

    Article  CAS  Google Scholar 

  • Ahmad M, Lee SS, Dou X, Mohan D, Sung JK, Yang JE, Ok YS (2012a) Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour Technol 118:536–544

    Article  CAS  Google Scholar 

  • Ahmad M, Lee SS, Yang JE, Ro HM, Lee YH, Ok YS (2012b) Effects of soil dilution and amendments (mussel shell, cow bone, and biochar) on Pb availability and phytotoxicity in military shooting range soil. Ecotox Environ Safe 79:225–231

    Article  CAS  Google Scholar 

  • Ahmad M, Lee SS, Lim JE, Lee SE, Cho JS, Moon DH, Hashimoto Y, Ok YS (2014a) Speciation and phytoavailability of lead and antimony in a small arms range soil amended with mussel shell, cow bone and biochar: EXAFS spectroscopy and chemical extractions. Chemosphere 95:433–441

    Article  CAS  Google Scholar 

  • Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS (2014b) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–23

    Article  CAS  Google Scholar 

  • Akhtar SS, Andersen MN, Liu F (2015a) Biochar mitigates salinity stress in potato. J Agron Crop Sci. doi:10.1111/jac.12132

    Google Scholar 

  • Akhtar SS, Andersen MN, Liu F (2015b) Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress. Agric Water Manage 158:61–68

    Article  Google Scholar 

  • Ali MA, Hoque MA, Kim PJ (2013) Mitigating global warming potentials of methane and nitrous oxide gases from rice paddies under different irrigation regimes. AMBIO 42:357–368

    Article  CAS  Google Scholar 

  • Ali MA, Kim PJ, Inubushi K (2015) Mitigating yield-scaled greenhouse gas emissions through combined application of soil amendments: a comparative study between temperate and subtropical rice paddy soils. Sci Total Environ 529:140–148

    Article  CAS  Google Scholar 

  • Allen RL (1847) A brief compend of American agriculture. CM Saxton, New York

    Book  Google Scholar 

  • Anderson CR, Condron LM, Clough TJ, Fiers M, Stewart A, Hill RA, Sherlock RR (2011) Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia 54:309–320

    Article  CAS  Google Scholar 

  • Asai H, Samson BK, Stephan HM, Songyikhangsuthor K, Homma K, Kiyono Y, Inoue Y, Shiraiwa T, Horie T (2009) Biochar amendment techniques for upland rice production in northern Laos 1. Soil physical properties, leaf SPAD and grain yield. Field Crops Res 111:81–84

    Article  Google Scholar 

  • Atkinson CJ, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337:1–18

    Article  CAS  Google Scholar 

  • Awad YM, Blagodatskaya E, Ok YS, Kuzyakov Y (2012) Effects of polyacrylamide, biopolymer, and biochar on decomposition of soil organic matter and plant residues as determined by 14C and enzyme activities. Eur J Soil Biol 48:1–10

    Article  CAS  Google Scholar 

  • Awad YM, Blagodatskaya E, Ok YS, Kuzyakov Y (2013) Effects of polyacrylamide, biopolymer and biochar on the decomposition of 14C-labelled maize residues and on their stabilization in soil aggregates. Eur J Soil Sci 64:488–499

    Article  CAS  Google Scholar 

  • Ayodele A, Oguntunde P, Joseph A, Dias DDS Jr (2009) Numerical analysis of the impact of charcoal production on soil hydrological behavior, runoff response and erosion susceptibility. Rev Bras Cienc Solo 33:137–145

    Article  Google Scholar 

  • Bagreev A, Bashkova S, Locke DC, Bandosz TJ (2001) Sewage sludge derived materials as efficient adsorbent for removal of hydrogen sulfide. Environ Sci Technol 35:1537–1543

    Article  CAS  Google Scholar 

  • Bailey VL, Fansler SJ, Smith JL, Bolton H Jr (2011) Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization. Soil Biol Biochem 43:296–301

    Article  CAS  Google Scholar 

  • Baronti S, Alberti G, DelleVedove G, Di Gennaro F, Fellet G, Genesio L, Miglietta F, Peressotti A, Vaccari FP (2010) The biochar option to improve plant yields: first results from some field and pot experiments in Italy. Italian J Agron 5:3–12

    Article  Google Scholar 

  • Barot S, Ugolini A, Brikci FB (2007) Nutrient cycling efficiency explains the long term effect of ecosystem engineers on primary production. Funct Ecol 21:1–10

    Article  Google Scholar 

  • Barrow CJ (2012) Biochar: potential for countering land degradation and for improving agriculture. Appl Geogr 34:21–28

    Article  Google Scholar 

  • Beesley L, Dickinson N (2011) Carbon and trace element fluxes in the pore water of an urban soil following green waste compost, woody and biochar amendments, inoculated with the earthworm Lumbricus terrestris. Soil Biol Biochem 43:188–196

    Article  CAS  Google Scholar 

  • Beesley L, Moreno-Jimenez E, Gomez-Eyles JL (2010) Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ Pollut 158:2282–2287

    Article  CAS  Google Scholar 

  • Berglund LM, De Luca TH, Zackrisson O (2004) Activated carbon amendment of soil alters nitrification rates in Scots pine forests. Soil Biol Biochem 36:2067–2073

    Article  CAS  Google Scholar 

  • Bian R, Zhang Z, Zhang A, Zheng J, Li L, Joseph S, Pan G, Chang A, Zheng J (2013) Effect of municipal biowaste biochar on greenhouse gas emissions and metal bioaccumulation in a slightly acidic clay rice paddy. BioResources 9:685–703

    Article  Google Scholar 

  • Bian R, Joseph S, Cui L, Pan G, Li L, Liu X, Zhang A, Rutlidge H, Marjo C, Wong S, Chia C, Gong B, Munroe P, Donne S (2014) A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment. J Hazard Mater 272:121–128

    Article  CAS  Google Scholar 

  • Bird MI, Wurster CM, de Paula Silva PH, Bass AM, de Nys R (2011) Algal biochar—production and properties. Bioresource Technol 102:1886–1891

    Article  CAS  Google Scholar 

  • Blackwell P, Krull E, Butler G, Herbert A, Solaiman ZM (2010) Effect of banded biochar on dryland wheat production and fertiliser use in south-western Australia: an agronomic and economic perspective. Soil Res 48:531–545

    Article  Google Scholar 

  • Boudsocq S, Lata JC, Mathieu J, Abbadie L, Barot S (2009) Modelling approach to analyse the effects of nitrification inhibition on primary production. Funct Ecol 23:220–230

    Article  Google Scholar 

  • Brewer CE, Schmidt-Rohr K, Satrio JA, Brown RC (2009) Characterization of biochar from fast pyrolysis and gasification systems. Environ Prog Sust Ener 28:386–396

    Article  CAS  Google Scholar 

  • Brown R (2009) Biochar production technology. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, pp 127–146

    Google Scholar 

  • Brown RA, Kercher AK, Nguyen TH, Nagle DC, Ball WP (2006) Production and characterization of synthetic wood chars for use as surrogates for natural sorbents. Org Geochem 37:321–333

    Article  CAS  Google Scholar 

  • Bruun EW, Hauggaard-Nielsen H, Norazana I, Egsgaard H, Ambus P, Jensen PA, Johansen KD (2011) Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil. Biomass Bioenerg 35:1182–1189

    Article  CAS  Google Scholar 

  • Bruun EW, Ambus P, Egsgaard H, Hauggaard-Nielsen H (2012) Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil Biol Biochem 46:73–79

    Article  CAS  Google Scholar 

  • Busch D, Kammann C, Grünhage L, Müller C (2012) Simple biotoxicity tests for evaluation of carbonaceous soil additives: establishment and reproducibility of four test procedures. J Environ Qual 41:1023–1032

    Article  CAS  Google Scholar 

  • Callaway RM, Aschehoug ET (2000) Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science 290:521–523

    Article  CAS  Google Scholar 

  • Cao X, Harris W (2010) Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour Technol 101:5222–5228

    Article  CAS  Google Scholar 

  • Cao X, Ma L, Gao B, Harris W (2009) Dairy-manure derived biochar effectively sorbs lead and atrazine. Environ Sci Technol 43:3285–3291

    Article  CAS  Google Scholar 

  • Case SDC, McNamara NP, Reay DS, Stott AW, Grant HK, Whitakera J (2015) Biochar suppresses N2O emissions while maintaining N availability in a sandy loam soil. Soil Biol Biochem 81:178–185

    Article  CAS  Google Scholar 

  • Castaldi S, Riondino M, Baronti S, Esposito FR, Marzaioli R, Rutigliano FA, Vaccari FP, Miglietta F (2011) Impact of biochar application to a Mediterranean wheat crop on soil microbial activity and greenhouse gas fluxes. Chemosphere 85:1464–1471

    Article  CAS  Google Scholar 

  • Cayuela ML, Sánchez-Monedero MA, Roig A, Hanley K, Enders A, Lehmann J (2013) Biochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions? Sci Rep 3:17–32

    Article  CAS  Google Scholar 

  • Chagger HK, Kendall A, McDonald A, Pourkashanian M, Williams A (1998) Formation of dioxins and other semi-volatile compounds in biomass combustion. Appl Energ 60:101–114

    Article  CAS  Google Scholar 

  • Chalker-Scott L (2014) Biochar: a home gardener’s primer. Washington State University Puyallup Research and Extension Center. Washington State University Extension and the U.S. Department of Agriculture

  • Chan KY, Xu Z (2009) Biochar: nutrient properties and their enhancement. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, pp 67–84

    Google Scholar 

  • Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S (2007) Agronomic values of greenwaste biochar as a soil amendment. Aust J Soil Res 45:629–634

    Article  CAS  Google Scholar 

  • Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S (2008) Using poultry litter biochars as soil amendments. Aust J Soil Res 46:437–444

    Article  Google Scholar 

  • Chen JP, Lin M (2001) Equilibrium and kinetics of metal ion adsorption onto a commercial H-type granular activated carbon: experimental and modeling studies. Water Res 35:2385–2394

    Article  CAS  Google Scholar 

  • Christoph GT, Wenceslau L, Johannes N, Thomas M, deVasconcelos JL, Winfried EHB, Zech W (2007) Long-term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered central Amazonian upland soil. Plant Soil 291:275–290

    Article  CAS  Google Scholar 

  • Cornelissen G, Martinsen V, Shitumbanuma V, Alling V, Breedveld GD, Rutherford DW, Sparrevik M, Hale SE, Obia A, Mulder J (2013) Biochar effect on maize yield and soil characteristics in five conservation farming sites in Zambia. Agron J 3:256–274

    Article  Google Scholar 

  • Cross A, Sohi SP (2011) The priming potential of biochar products in relation to labile carbon contents and soil organic matter status. Soil Biol Biochem 43:2127–2134

    Article  CAS  Google Scholar 

  • Cui L, Li L, Zhang A, Pan G, Bao D, Chang A (2011) Biochar amendment greatly reduces rice cd uptake in a contaminated paddy soil: a two-year field experiment. BioResources 6:2605–2618

    CAS  Google Scholar 

  • Cui L, Chen T, Yan J, Fu Q, Yang Y, Chang A, Li L, Quan G, Ding C (2013) Influence of biochar on microbial activities of heavy metals contaminated paddy fields. BioResources 8:5536–5548

    Google Scholar 

  • de la Rosa JM, Knicker H (2011) Bioavailability of N released from N-rich pyrogenic organic matter: an incubation study. Soil Biol Biochem 43:2368–2373

    Article  CAS  Google Scholar 

  • De Luca TH, MacKenzie MD, Gundale MJ (2009) Biochar effects on soil nutrient transformations. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, pp 251–270

    Google Scholar 

  • de Sousa AMB, Santos RRS, Gehring C (2014) Charcoal in Amazonian paddy soil—nutrient availability, rice growth and methane emissions. J Plant Nutr Soil Sci 177:39–47

    Article  CAS  Google Scholar 

  • Deenik JL, McClellan T, Uehara G, Antal MJ, Campbell S (2010) Charcoal volatile matter content influences plant growth and soil nitrogen transformations. Soil Sci Soc Am J 74:1259–1270

    Article  CAS  Google Scholar 

  • Ding Y, Liu YX, Wu WX, Shi DZ, Yang M, Zhong ZK (2010) Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns. Water Air Soil Pollut 213:47–55

    Article  CAS  Google Scholar 

  • Downie A, Crosky A, Munroe P (2009) Physical properties of biochar. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, pp 13–32

    Google Scholar 

  • Duku MH, Gu S, Hagan EB (2011) Biochar production potential in Ghana—a review. Renew Sust Energ Rev 15:3539–3551

    Article  Google Scholar 

  • Elad Y, David DR, Harel YM, Borenshtein M, Kalifa HB, Silber A, Graber ER (2010) Induction of systemic resistance in plants by biochar, a soil-applied C sequestering agent. Phytopathology 100:913–921

    Article  Google Scholar 

  • Elad Y, Cytryn E, Harel YM, Lew B, Graber ER (2012) The biochar effect: plant resistance to biotic stresses. Phytopathol Mediterr 50:335–349

    Google Scholar 

  • Elmer WH, Pignatello JJ (2011) Effect of biochar amendments on mycorrhizal associations and Fusarium crown and root rot of asparagus in replant soils. Plant Dis 95:960–966

    Article  Google Scholar 

  • El-Naggar AH, Usman ARA, Al-Omran A, Ok YS, Ahmad M, Al-Wabel MI (2015) Carbon mineralization and nutrient availability in calcareous sandy soils amended with woody waste biochar. Chemosphere 138:67–73

    Article  CAS  Google Scholar 

  • Enders A, Hanley K, Whitman T, Joseph S, Lehmann J (2012) Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresource Technol 114:644–653

    Article  CAS  Google Scholar 

  • Feng Y, Xu Y, Yu Y, Xie Z, Lin X (2012) Mechanisms of biochar decreasing methane emission from Chinese paddy soils. Soil Biol Biochem 46:80–88

    Article  CAS  Google Scholar 

  • Feng L, Gui-tong L, Qi-mei L, Xiao-rong Z (2014) Crop yield and soil properties in the first 3 years after biochar application to a calcareous soil. J Integ Agric 13:525–532

    Article  CAS  Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey D, Haywood J, Lean J, Lowe D, Myhre G, Nganga J, Prinn R, Raga G, Schultz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge, United Kingdom, pp 129–234

    Google Scholar 

  • Free HF, McGill CR, Rowarth JS, Hedley MJ (2010) The effect of biochars on maize (Zea mays) germination. New Zealand J Agric Res 53:1–4

    Article  Google Scholar 

  • Fungo B, Guerena D, Thiongo M, Lehmann J, Neufeldt H, Kalbitz K (2014) N2O and CH4 emission from soil amended with steam-activated biochar. J Plant Nutr Soil Sci 177:34–38

    Article  CAS  Google Scholar 

  • Gaskin JW, Speir RA, Harris K, Das KC, Lee RD, Morris LA, Fisher DS (2010) Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agron J 102:623–633

    Article  CAS  Google Scholar 

  • Gaur A, Adholeya A (2000) Effects of the particle size of soil-less substrates upon AM fungus inoculum production. Mycorrhiza 10:43–48

    Article  Google Scholar 

  • Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review. Biol Fert Soils 35:219–230

    Article  CAS  Google Scholar 

  • Graber ER, Harel YM, Kolton M, Cytryn E, Silber A, Davi DR, Tsechansky L, Borenshtein M, Elad Y (2010) Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil 337:481–496

    Article  CAS  Google Scholar 

  • Graber ER, Tsechansky L, Mayzlish-Gati E, Shema R, Koltai H (2015) A humic substances product extracted from biochar reduces Arabidopsis root hair density and length under P-sufficient and P-starvation conditions. Plant Soil 395:21–30

    Article  CAS  Google Scholar 

  • Grossman JM, O’Neill BE, Tsai SM, Liang B, Neves E, Lehmann J, Thies JE (2010) Amazonian anthrosols support similar microbial communities that differ distinctly from those extant in adjacent, unmodified soils of the same mineralogy. Microb Ecol 60:192–205

    Article  CAS  Google Scholar 

  • Güereña D, Lehmann J, Hanley K, Enders A, Hyland C, Riha S (2013) Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system. Plant Soil 365:239–254

    Article  CAS  Google Scholar 

  • Haefele SM, Konboon Y, Wongboon W, Amarante S, Maarifat AA, Pfeiffer EM, Knoblauch C (2011) Effects and fate of biochar from rice residues in rice-based systems. Field Crops Res 121:430–440

    Article  Google Scholar 

  • Haider G, Koyro HW, Azam F, Steffens D, Müller C, Kammann C (2014) Biochar but not humic acid product amendment affected maize yields via improving plant-soil moisture relations. Plant Soil 395:141–157

    Article  CAS  Google Scholar 

  • Hammes K, Schmidt MWI (2009) Changes of biochar in soil. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, pp 169–178

    Google Scholar 

  • Hao W, Björkman E, Lilliestråle M, Hedin N (2013) Activated carbons prepared from hydrothermally carbonized waste biomass used as adsorbents for CO2. Appl Ener 112:526–532

    Article  CAS  Google Scholar 

  • Harel YM, Elad Y, Rav-David D, Borenstein M, Shulchani R, Lew B, Graber ER (2012) Biochar mediates systemic response of strawberry to foliar fungal pathogens. Plant Soil 357:245–257

    Article  CAS  Google Scholar 

  • Hospido A, Moreira T, Martín M, Rigola M, Feijoo G (2005) Environmental evaluation of different treatment processes for sludge from urban wastewater treatments: anaerobic digestion versus thermal processes (10 pp). Int J Life Cycle Assess 10:336–345

    Article  CAS  Google Scholar 

  • Hottle RD (2013) Impact of biochar on plant productivity and soil properties under a maize soybean rotation on an Alfisol in Central Ohio. PhD dissertation, Graduate Program in Environmental Science, The Ohio State University, USA

  • Hu Y-L, Wu F-P, Zeng D-H, Chang S-X (2014) Wheat straw and its biochar had contrasting effects on soil C and N cycling two growing seasons after addition to a Black Chernozemic soil planted to barley. Biol Fert Soils 50:1291–1299

    Article  CAS  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis, Contribution of Working Group into the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 498–540

    Chapter  Google Scholar 

  • Inyang M, Dickenson E (2015) The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: a review. Chemosphere 134:232–240

    Article  CAS  Google Scholar 

  • Ishii T, Kadoya K (1994) Effects of charcoal as a soil conditioner on citrus growth and vesicular arbuscular mycorrhizal development. J Jap Soc Hort Sci 63:529–535

    Article  CAS  Google Scholar 

  • Jaiswal AK, Elad Y, Graber ER, Frenkel O (2014) Rhizoctonia solani suppression and plant growth promotion in cucumber as affected by biochar pyrolysis temperature, feedstock and concentration. Soil Biol Biochem 69:110–118

    Article  CAS  Google Scholar 

  • Jeffery S, Verheijen FGA, van der Velde M, Bastos AC (2011) A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric Ecosyst Environ 144:175–187

    Article  Google Scholar 

  • Jiang J, Xu RK, Jiang TY, Li Z (2012a) Immobilization of Cu(II), Pb(II) and Cd(II) by the addition of rice straw derived biochar to a simulated polluted Ultisol. J Hazard Mater 229(230):145–150

    Article  CAS  Google Scholar 

  • Jiang TY, Jiang J, Xu RK, Li Z (2012b) Adsorption of Pb(II) on variable charge soils amended with rice-straw derived biochar. Chemosphere 89:249–256

    Article  CAS  Google Scholar 

  • Jiang S, Huang L, Nguyen TAH, Ok YS, Rudolph V, Yang H, Zhang D (2016) Copper and zinc adsorption by softwood and hardwood biochars under elevated sulphate-induced salinity and acidic pH conditions. Chemosphere 142:64–71

    Article  CAS  Google Scholar 

  • Jones S, Donaldson S, Deacon J (1991) Behaviour of zoospores and zoospore cysts in relation to root infection by Pythium aphanidermatum. New Phytol 117:289–301

    Article  Google Scholar 

  • Jones DL, Edwards-Jones G, Murphy DV (2011) Biochar mediated alterations in herbicide breakdown and leaching in soil. Soil Biol Biochem 43:804–813

    Article  CAS  Google Scholar 

  • Jones DL, Rousk J, Edwards-Jones G, DeLuca TH, Murphy DV (2012) Biochar mediated changes in soil quality and plant growth in a three year field trial. Soil Biol Biochem 45:113–124

    Article  CAS  Google Scholar 

  • Joseph SD, Camps-Arbestain M, Lin Y, Munroe P, Chia CH, Hook J, Van Zwieten L, Kimber S, Cowie A, Singh BP, Lehmann J, Foidl N, Smernik RJ, Amonette JE (2010) An investigation into the reactions of biochar in soil. Aust J Soil Res 48:501–515

    Article  CAS  Google Scholar 

  • Joseph S, Anawar HM, Storer P, Blackwell P, Chia C, Lin Y, Munroe P, Donne S, Hovart J, Wang J, Solaiman ZM (2015) Effect of enriched biochars containing nanophase magnetic iron particles on mycorrhizal colonisation, plant growth, nutrient uptake and soil quality improvement. Pedosphere 25:749–760

    Article  Google Scholar 

  • Kaal J, Cortizas AM, Nierop KGJ (2009) Characterisation of aged charcoal using a coil probe pyrolysis–GC/MS method optimized for black carbon. J Anal Appl Pyrol 85:408–416

    Article  CAS  Google Scholar 

  • Kambo HS, Dutta A (2015) Comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew Sust Ener Rev 45:359–378

    Article  CAS  Google Scholar 

  • Kammann CI, Linsel S, Gößling JW, Koyro HW (2011) Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil-plant relations. Plant Soil 345:195–210

    Article  CAS  Google Scholar 

  • Kammann C, Ratering S, Eckhard C, Müller C (2012) Biochar and hydrochar effects on greenhouse gas (carbon dioxide, nitrous oxide, methane) fluxes from soils. J Environ Qual 41:1052–1066

    Article  CAS  Google Scholar 

  • Karhu K, Mattilab T, Bergströma I, Regina K (2011) Biochar addition to agricultural soil increased CH4 uptake and water holding capacity—results from a short-term pilot field study. Agric Ecosyst Environ 140:309–313

    Article  CAS  Google Scholar 

  • Karunanithi R, Szogi A, Bolan N, Naidu R, Loganathan P, Hunt PG, Vanotti MB, Saint CP, Ok YS, Krishnamoorthy S (2015) Phosphorus recovery and reuse from waste streams. Adv Agron 131:173–250

    Article  Google Scholar 

  • Kasozi GN, Zimmerman AR, Nkedi-Kizza P, Gao B (2010) Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars). Environ Sci Technol 44:6189–6195

    Article  CAS  Google Scholar 

  • Keiluweit M, Nico PS, Johnson MG, Kleber M (2010) Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol 44:1247–1253

    Article  CAS  Google Scholar 

  • Keith A, Singh B, Singh BP (2011) Interactive priming of biochar and labile organic matter mineralization in a smectite-rich soil. Environ Sci Technol 45:9611–9618

    Article  CAS  Google Scholar 

  • Khan S, Chao C, Waqas M, Peter H, Arp H, Zhu YG (2013) Sewage sludge biochar influence upon rice (Oryza sativa L.) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil. Environ Sci Technol 47:8624–8632

    Article  CAS  Google Scholar 

  • Khan S, Reid BJ, Li G, Zhu YG (2014) Application of biochar to soil reduces cancer risk via rice consumption: a case study in Miaoqian village, Longyan, China. Environ Inter 68:154–161

    Article  CAS  Google Scholar 

  • Khanmohammadi Z, Afyuni M, Mosaddeghi MR (2015) Effect of pyrolysis temperature on chemical and physical properties of sewage sludge biochar. Waste Manage Res. doi:10.1177/0734242X14565210

    Google Scholar 

  • Khavazi K, Rejali F, Seguin P, Miransari M (2007) Effects of carrier, sterilisation method, and incubation on survival of Bradyrhizobium japonicum in soybean (Glycine max L.) inoculants. Enzyme Microb Technol 41:780–784

    Article  CAS  Google Scholar 

  • Khodadad CLM, Zimmerman AR, Green SJ, Uthandi S, Foster JS (2011) Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments. Soil Biol Biochem 43:385–392

    Article  CAS  Google Scholar 

  • Kim JS, Sparovek S, Longo RM, De Melo WJ, Crowley D (2007) Bacterial diversity of terra preta and pristine forest soil from the Western Amazon. Soil Biol Biochem 39:648–690

    Article  CAS  Google Scholar 

  • Kim HS, Kim KR, Kim HJ, Yoon JH, Yang J, Ok Y, Owens G, Kim KH (2015) Effect of biochar on heavy metal immobilization and uptake by lettuce (Lactuca sativa L.) in agricultural soil. Environ Earth Sci 74:1249–1259

    Article  CAS  Google Scholar 

  • Kim HS, Kim KR, Yang JE, Ok YS, Owens G, Nehls T, Wessolek G, Kim KH (2016) Effect of biochar on reclaimed tidal land soil properties and maize (Zea mays L.) response. Chemosphere 142:153–159

    Article  CAS  Google Scholar 

  • Kimetu JM, Lehmann J, Ngoze SO, Mugendi DN, Kinyangi JM, Riha S, Verchot L, Recha JW, Pell AN (2008) Reversibility of soil productivity decline with organic matter of differing quality along a degradation gradient. Ecosystems 11:726–739

    Article  CAS  Google Scholar 

  • Kishimoto S, Sugiura G (1985) Charcoal as a soil conditioner. In: Proceedings of a Symposium on Forest Products Research International: achievements and the future. 22–26 April 1985, CSIR Conference Center, Pretoria, South Africa, 5, pp 1–15

  • Kloss S, Zehetner F, Dellantonio A, Hamid R, Ottner F, Liedtke V, Schwanninger M, Gerzabek MH, Soja G (2012) Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. J Environ Qual 41:990–1000

    Article  CAS  Google Scholar 

  • Knoblauch C, Maarifat AA, Pfeiffer EM, Haefele SM (2011) Degradability of black carbon and its impact on trace gas fluxes and carbon turnover in paddy soils. Soil Biol Biochem 43:1768–1778

    Article  CAS  Google Scholar 

  • Kolb SE, Fermanich KJ, Dornbush ME (2009) Effect of charcoal quantity on microbial biomass and activity in temperate soils. Soil Sci Soc Am J 73:1173–1181

    Article  CAS  Google Scholar 

  • Kookana RS (2010) The role of biochar in modifying the environmental fate, bioavailability, and efficacy of pesticides in soils: a review. Aust J Soil Res 48:627–637

    Article  CAS  Google Scholar 

  • Kookana RS, Sarmah AK, Van Zwieten L, Krull E, Singh B (2011) Biochar application to soil: agronomic and environmental benefits and unintended consequences. Adv Agron 112:104–144

    Google Scholar 

  • Kulmatiski A, Beard KH (2011) Long-term plant growth legacies overwhelm short-term plant growth effects on soil microbial community structure. Soil Biol Biochem 43:823–830

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Subbotina I, Chen HQ, Bogomolova I, Xu XL (2009) Black carbon decomposition and incorporation into soil microbial biomass estimated by C-14 labeling. Soil Biol Biochem 41:210–219

    Article  CAS  Google Scholar 

  • Lai WY, Cheng CH, Lai CM, Pai CW, Ke GR, Chen SY, Chung RS, Chen CC, Chen CT (2013) The effects of woodchip biochar application on crop yield, carbon sequestration and greenhouse gas emissions from soils planted with rice or leaf beet. J Taiwan Inst Chem Eng 44:1039–1044

    Article  CAS  Google Scholar 

  • Laird D, Fleming P, Wang B, Horton R, Karlen D (2010a) Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 158:436–442

    Article  CAS  Google Scholar 

  • Laird DA, Fleming P, Davis DD, Horton R, Wang B, Karlen DL (2010b) Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 158:443–449

    Article  CAS  Google Scholar 

  • Lal R (2008) Black and buried carbons’ impacts on soil quality and ecosystem services. Soil Tillage Res 99:1–3

    Article  Google Scholar 

  • Lambers H, Raven JA, Shaver GR, Smith SE (2008) Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol 23:95–103

    Article  Google Scholar 

  • Lammirato C, Miltner A, Kaestner M (2011) Effects of wood char and activated carbon on the hydrolysis of cellobiose by β-glucosidase from Aspergillus niger. Soil Biol Biochem 43:1936–1942

    Article  CAS  Google Scholar 

  • Lee Y, Park J, Ryu C, Gang KS, Yang W, Park YK, Jung J, Huyn S (2013) Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 °C. Bioresour Technol 148:196–201

    Article  CAS  Google Scholar 

  • Lee SS, Shah HS, Awad YM, Kumar S, Ok YS (2015) Synergy effects of biochar and polyacrylamide on plants growth and soil erosion control. Environ Earth Sci 74:2463–2473

    Article  CAS  Google Scholar 

  • Lehmann J (2007) A handful of carbon. Nature 447:143–144

    Article  CAS  Google Scholar 

  • Lehmann J, Joseph S (2009) Biochar for environmental management: an introduction. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology, 1st edn. Earthscan, London, pp 1–12

    Google Scholar 

  • Lehmann J, Joseph S (2015) Biochar for environmental management: an introduction. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science, technology and implementation, 2nd edn. Earthscan from Routledge, London, pp 1–1214

    Google Scholar 

  • Lehmann J, Rondon M (2006) Bio-char soil management on highly weathered soils in the humid tropics. In: Uphoff N, Ball AS, Herren H, Husson O, Laing M, Palm C, Pretty J, Sanchez P, Sanginga N, Thies J (eds) Biological approaches to sustainable soil systems. Taylor & Francis, Boca Raton, pp 517–530

    Chapter  Google Scholar 

  • Lehmann J, da Silva JP, Steiner C, Nehls T, Zech W, Glaser B (2003) Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil 249:343–357

    Article  CAS  Google Scholar 

  • Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems—a review. Mitig Adapt Strateg Glob Change 11:403–427

    Article  Google Scholar 

  • Lehmann J, Skjemstad J, Sohi S, Carter J, Barson M, Falloon P, Coleman K, Woodbury P, Krull E (2008) Australian climate-carbon cycle feedback reduced by soil black carbon. Nat Geosci 1:832–835

    Article  CAS  Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota—a review. Soil Biol Biochem 43:1812–1836

    Article  CAS  Google Scholar 

  • Li D, Hockaday WC, Masiello CA, Alvarez PJJ (2011) Earthworm avoidance of biochar can be mitigated by wetting. Soil Biol Biochem 43:1732–1737

    Article  CAS  Google Scholar 

  • Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O’Neill B, Skjemstad JO, Thies J, Luizão FJ, Petersen J, Neves EG (2006) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70:1719–1730

    Article  CAS  Google Scholar 

  • Liang B, Lehmann J, Solomon D, Sohi S, Thies JE, Skjemstad JO, Luizão FL, Engelhard MH, Neves EG, Wirick S (2008) Stability of biomass-derived black carbon in soils. Geochim Cosmochim Acta 72:6078–6096

    Google Scholar 

  • Liang B, Lehmann J, Sohi SP, Theis JE, O’Neill B, Trujillo L, Gaunt J, Solomon D, Grossman J, Neves EG, Luizão FJ (2010) Black carbon affects the cycling of non black carbon in soil. Org Geochem 41:206–213

    Article  CAS  Google Scholar 

  • Liesch AM, Weyers SL, Gaskin JW, Das KC (2010) Impact of two different biochars on earthworm growth and survival. Ann Environ Sci 4:1–9

    CAS  Google Scholar 

  • Liu YX, Yang M, Wu YM, Wang HL, Chen YX, Wu WX (2011) Reducing CH4 and CO2 emissions from waterlogged paddy soil with biochar. J Soils Sediments 11:930–939

    Article  CAS  Google Scholar 

  • Liu X, Qu J, Li LQ, Zhang A, Jufeng Z, Zheng J, Pan G (2012) Can biochar amendment be an ecological engineering technology to depress N2O emission in rice paddies?—a cross site field experiment from South China. Ecol Eng 42:168–173

    Article  Google Scholar 

  • Liu XY, Zhang AF, Ji CY, Joseph S, Bian RJ, Li LQ, Pan GX, Paz-Ferreiro J (2013) Biochar’s effect on crop productivity and the dependence on experimental conditions—a meta-analysis of literature data. Plant Soil 373:583–594

    Article  CAS  Google Scholar 

  • Liu J, Wu J, Li Y, Su Y, Ge T, Jones DL (2014a) Effects of biochar amendment on the net greenhouse gas emission and greenhouse gas intensity in a Chinese double rice cropping system. Eur J Soil Biol 65:30–39

    Article  CAS  Google Scholar 

  • Liu X, Ye Y, Liu Y, Zhang A, Zhang X, Li L, Pan G, Kibue GW, Zheng J, Zheng J (2014b) Sustainable biochar effects for low carbon crop production: a 5-crop season field experiment on a low fertility soil from Central China. Agric Syst 129:22–29

    Article  Google Scholar 

  • Liu C, Wang H, Tang X, Guan Z, Reid BJ, Rajapaksha AU, Ok YS, Sun H (2015a) Biochar increased water holding capacity but accelerated organic carbon leaching from a sloping farmland soil in China. Environ Sci Pollut Res. doi:10.1007/s11356-015-4885-9

    Google Scholar 

  • Liu Q, Liu B, Ambus P, Zhang Y, Hansen V, Lin Z, Shen D, Liu G, Bei Q, Zhu J, Wang X, Ma J, Lin X, Yu Y, Zhu C, Xie Z (2015b) Carbon footprint of rice production under biochar amendment—a case study in a Chinese rice cropping system. GCB Bioener. doi:10.1111/gcbb.12248

    Google Scholar 

  • Loganathan VA, Feng Y, Sheng GD, Clement TP (2009) Crop-residue-derived char influences sorption, desorption and bioavailability of atrazine in soils. Soil Sci Soc Am J 73:967–974

    Article  CAS  Google Scholar 

  • Luo Y, Durenkamp M, Nobili MD, Lin Q, Brookes PC (2011) Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH. Soil Biol Biochem 43:2304–2314

    Article  CAS  Google Scholar 

  • Luo Y, Jiao Y, Zhao X, Li G, Zhao L, Meng H (2014) Improvement to maize growth caused by biochars derived from six feedstock’s prepared at three different temperatures. J Integ Agric 13:533–540

    Article  Google Scholar 

  • Ly P, Vu QD, Jensen LS, Pandey A, de Neergaard A (2014) Effects of rice straw, biochar and mineral fertiliser on methane (CH4) and nitrous oxide (N2O) emissions from rice (Oryza sativa L.) grown in a rain-fed lowland rice soil of Cambodia: a pot experiment. Paddy Water Environ 13:465–475

    Article  Google Scholar 

  • Major J, Lehmann J, Rondon M, Goodale C (2010a) Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Glob Change Biol 16:1366–1379

    Article  Google Scholar 

  • Major J, Rondon M, Molina D, Riha SJ, Lehmann J (2010b) Maize yield and nutrition during 4 years biochar application to a Colombian savanna oxisol. Plant Soil 333:117–128

    Article  CAS  Google Scholar 

  • Makoto K, Tamai Y, Kim YS, Koike T (2010) Buried charcoal layer and ectomycorrhizae cooperatively promote the growth of Larix gmelinii seedlings. Plant Soil 327:143–152

    Article  CAS  Google Scholar 

  • Mandal S, Thangarajan R, Bolan NS, Sarkar B, Khan N, Ok YS, Naidu R (2016) Biochar-induced concomitant decrease in ammonia volatilization and increase in nitrogen use efficiency by wheat. Chemosphere 142:120–127

    Article  CAS  Google Scholar 

  • Manyà JJ (2012) Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. Environ Sci Technol 46:7939–7954

    Article  CAS  Google Scholar 

  • Matsubara YI, Hasegawa N, Fukui H (2002) Incidence of Fusarium root rot in asparagus seedlings infected with arbuscular mycorrhizal fungus as affected by several soil amendments. J Jap Soc Hort Sci 71:370–374

    Article  Google Scholar 

  • Mau AE, Utami SR (2014) Effects of biochar amendment and arbuscular mycorrhizal fungi inoculation on availability of soil phosphorus and growth of maize. J Degr Min Lands Manage 1:69–74

    Google Scholar 

  • McClellan AT, Deenik J, Uehara G, Antal M (2007) Effects of flash carbonized macadamia nutshell charcoal on plant growth and soil chemical properties. American Society of Agronomy (Abstracts, 3–7 November, New Orleans, LA)

  • McHenry MP (2010) Carbon-based stock feed additives: a research methodology that explores ecologically delivered C biosequestration, alongside live weights, feed use efficiency, soil nutrient retention, and perennial fodder plantations. J Sci Food Agric 90:183–187

    Article  CAS  Google Scholar 

  • Méndez A, Gómez A, Paz-Ferreiro J, Gascó G (2012) Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil. Chemosphere 89:1354–1359

    Article  CAS  Google Scholar 

  • Mesa AC, Spokas K (2011) Impacts of biochar (black carbon) additions on the sorption and efficacy of herbicides. In: Kortenkamp A (ed) Herbicides and environment. InTech, Vienna, pp 315–340

    Google Scholar 

  • Mikan CJ, Abrams MD (1995) Altered forest composition and soil properties of historic charcoal hearths in southeastern Pennsylvania. Can J Forest Res 25:687–696

    Article  Google Scholar 

  • Mimmo T, Panzacchib P, Baratieria M, Daviesb CA, Tonona G (2014) Effect of pyrolysis temperature on miscanthus (Miscanthus × giganteus) biochar physical, chemical and functional properties. Biom Bioener 62:149–157

    Article  CAS  Google Scholar 

  • Mohan D, Pittman CU Jr, Bricka M, Smith F, Yancey B, Mohammad J, Steele PH, Alexandre-Franco MF, Gómez-Serrano V, Gong H (2007) Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. J Colloid Interf Sci 310:57–73

    Article  CAS  Google Scholar 

  • Mohan D, Sharma R, Singh VK, Steele P, Pittman CU Jr (2012) Fluoride removal from water using bio-char, a green waste, low-cost adsorbent: equilibrium uptake and sorption dynamics modeling. Ind Eng Chem Res 51:900–914

    Article  CAS  Google Scholar 

  • Mohan D, Sarswat A, Ok YS, Pittman CU (2014) Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—a critical review. Bioresour Tech 160:191–202

    Article  CAS  Google Scholar 

  • Moon DH, Park JW, Chang YY, Ok YS, Lee SS, Ahmad M, Koutsospyros A, Park JH, Baek K (2013) Immobilization of lead in contaminated firing range soil using biochar. Environ Sci Pollut Res 20:8464–8471

    Article  CAS  Google Scholar 

  • Nag SK, Kookana R, Smith L, Krull E, Macdonald LM, Gill G (2011) Poor efficacy of herbicides in biochar-amended soils as affected by their chemistry and mode of action. Chemosphere 84:1572–1577

    Article  CAS  Google Scholar 

  • Nelissen V, Ruysschaert G, Müller-Stöver D, Bodé S, Cook J, Ronsse F, Shackley S, Boeckx P, Hauggaard-Nielsen H (2014) Short-term effect of feedstock and pyrolysis temperature on biochar characteristics, soil and crop response in temperate soils. Agronomy 4:52–73

    Article  CAS  Google Scholar 

  • Nelson NO, Agudelo SC, Yuan W, Gan J (2011) Nitrogen and phosphorus availability in biochar-amended soils. Soil Sci 176:218–226

    CAS  Google Scholar 

  • Nerome M, Toyota K, Islam T, Nishijima T, Matsuoka T, Sato K, Yamaguchi Y (2005) Suppression of bacterial wilt of tomato by incorporation of municipal biowaste charcoal into soil. Soil Microorg (Japan) 59:98–114

    Google Scholar 

  • Nguyen BT, Lehmann J (2009) Black carbon decomposition under varying water regimes. Org Geochem 40:846–853

    Article  CAS  Google Scholar 

  • Noguera D, Rondón M, Laossi KR, Hoyos V, Lavelle P, de Carvalho MHC, Barot S (2010) Contrasted effect of biochar and earthworms on rice growth and resource allocation in different soils. Soil Biol Biochem 42:1017–1027

    Article  CAS  Google Scholar 

  • Novak JM, Busscher WJ, Laird DL, Ahmedna M, Watts DW, Niandou MAS (2009a) Impact of biochar amendment on fertility of a Southeastern Coastal Plain soil. Soil Sci 174:105–112

    Article  CAS  Google Scholar 

  • Novak JM, Lima I, Xing B, Gaskin JW, Steiner C, Das KC, Ahmedn M, Rehrah D, Watts DW, Busscher WJ, Schomberg H (2009b) Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Ann Environ Sci 3:195–206

    CAS  Google Scholar 

  • Novotny EH, Hayes MHB, Madari BE, Bonagamba TJ, de Azevedo ER, de Souza AA, Song GX, Nogueira CM, Mangrich AS (2009) Lessons from the Terra Preta de Indios of the Amazon region for the utilisation of charcoal for soil amendment. J Brazilian Chem Soc 20:10038–10100

    Article  Google Scholar 

  • O’Neill B, Grossman J, Tsai MT, Gomes JE, Lehmann J, Peterson J, Neves E, Thies JE (2009) Bacterial community composition in Brazilian Anthrosols and adjacent soils characterized using culturing and molecular identification. Microb Ecol 58:23–35

    Article  Google Scholar 

  • Ogawa M (1994) Symbiosis of people and nature in the tropics. Farming Japan 28:10–34

    Google Scholar 

  • Oguntunde PG, Fosu M, Ajayi AE, van de Giesen N (2004) Effects of charcoal production on maize yield, chemical properties and texture of soil. Biol Fert Soils 39:295–299

    Article  CAS  Google Scholar 

  • Painter TJ (2001) Carbohydrate polymers in food preservation: an integrated view of the Maillard reaction with special reference to discoveries of preserved foods in Sphagnum dominated peat bogs. Carbohyd Polym 36:335–347

    Article  Google Scholar 

  • Pandey A, Mai TLA, Mai VT, Jensen LS, Vu DQ, Bui TPL, de Neergaard A (2014) Organic matter and water management strategies to reduce methane and nitrous oxide emissions from rice paddies in Vietnam. Agric Ecosyst Environ 196:137–146

    Article  CAS  Google Scholar 

  • Paoletti MG, Sommaggio D, Favretto MR, Petruzzelli G, Pezzarossa B, Barbafieri M (1998) Earthworms as useful bioindicators of agroecosystem sustainability in orchards and vineyards with different inputs. Appl Soil Ecol 10:137–150

    Article  Google Scholar 

  • Park JH, Cho JS, Ok YS, Kim SH, Kang SW, Choi IW, Heo JS, DeLaunee RD, Seo DC (2015a) Competitive adsorption and selectivity sequence of heavy metals by chicken bone-derived biochar: batch and column experiment. J Environ Sci Health. doi:http://dx.doi.org/10.1080/10934529.2015.1047680

  • Park JH, Ok YS, Kim SH, Cho JS, Heo JS, Delaune RD, Seo DC (2015b) Evaluation of phosphorus adsorption capacity of sesame straw biochar on aqueous solution: influence of activation methods and pyrolysis temperatures. Environ Geochem Health doi: 10.1007/s10653-015-9709

  • Paul H (2011) Biochar knowledge gaps. Available: http://www.econexus.info/publication/biochar-knowledge-gaps. Accessed 20 Nov 2015

  • Paz-Ferreiro J, Lu H, Fu S, Méndez A, Gascó G (2014) Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review. Solid Earth 5:65–75

    Article  Google Scholar 

  • Peng X, Ye L, Wang C, Zhou H, Sun B (2011) Temperature and duration-dependent rice straw-derived biochar: characteristics and its effects on soil properties of an Ultisol in Southern China. Soil Tillage Res 112:159–166

    Article  Google Scholar 

  • Piccolo A, Pietramellara G, Mbagwu JSC (1996) Effects of coal derived humic substances on water retention and structural stability of Mediterranean soils. Soil Use Manage 12:209–213

    Article  Google Scholar 

  • Powles SB, Preston C, Bryan IB, Jutsum AR (1996) Herbicide resistance: impact and management. Adv Agron 58:57–93

    Article  Google Scholar 

  • Pratt K, Moran D (2010) Evaluating the cost-effectiveness of global biochar mitigation potential. Biomass Bioener 34:1149–1158

    Article  CAS  Google Scholar 

  • Prendergast-Miller MT, Duvall M, Sohi SP (2011) Localisation of nitrate in the rhizosphere of biochar-amended soils. Soil Biol Biochem 43:2243–2246

    Article  CAS  Google Scholar 

  • Puga AP, Abreu CA, Melo LCA, Paz-Ferreiro J, Beesley L (2015) Cadmium, lead, and zinc mobility and plant uptake in a mine soil amended with sugarcane straw biochar. Environ Sci Pollut Res 22:17606–17614

    Article  CAS  Google Scholar 

  • Purakayastha TJ, Kumari S, Pathak H (2015) Characterisation, stability, and microbial effects of four biochars produced from crop residues. Geoderma 239(240):293–303

    Article  CAS  Google Scholar 

  • Qayyum MF, Steffens D, Reisenauer HP, Schubert S (2012) Kinetics of carbon mineralization of biochars compared with wheat straw in three soils. J Environ Qual 41:1210–1220

    Article  CAS  Google Scholar 

  • Qian L, Chen L, Joseph S, Pan G, Li L, Zheng J, Zhang X, Zheng J, Yu X, Jiafang W (2014) Biochar compound fertilizer as an option to reach high productivity but low carbon intensity in rice agriculture of China. Carbon Manage 5:145–154

    Article  CAS  Google Scholar 

  • Quilliam RS, Marsden KA, Gertler C, Rousk J, DeLuca TH, Jones DL (2012) Nutrient dynamics, microbial growth and weed emergence in biochar amended soil are influenced by time since application and reapplication rate. Agric Ecosyst Environ 158:192–199

    Article  CAS  Google Scholar 

  • Rahman L, Whitelaw-Weckert M, Orchard B (2014) Impact of organic soil amendments, including poultry litter biochar, on nematodes in a Riverina, NSW vineyard. Soil Res 52:604–619

    Article  Google Scholar 

  • Rajapaksha AU, Vithanage M, Zhang M, Ahmad M, Mohan D, Chang SX, Ok YS (2014) Pyrolysis condition affected sulfamethazine sorption by tea waste biochars. Bioresour Technol 166:303–308

    Article  CAS  Google Scholar 

  • Rajapaksha A, Ahmad M, Vithanage M, Kim KR, Chang J, Lee S, Ok YS (2015) The role of biochar, natural iron oxides, and nanomaterials as soil amendments for immobilizing metals in shooting range soil. Environ Geochem Health 37:931–942

    Article  CAS  Google Scholar 

  • Retan GA (1915) Charcoal as a means of solving some nursery problems. J Forest 13:25–30

    Google Scholar 

  • Roberts KG, Gloy BA, Joseph S, Scott NR, Lehmann J (2010) Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential. Environ Sci Technol 44:827–833

    Article  CAS  Google Scholar 

  • Rogovska N, Laird D, Cruse R, Trabue S, Heaton E (2012a) Evaluation of biochar quality utilizing standard germination test. J Environ Qual 41:1–9

    Article  CAS  Google Scholar 

  • Rogovska NP, Laird D, Cruse RM, Trabue S, Heaton E (2012b) Germination tests for assessing biochar quality. J Environ Qual 41:1014–1022

    Article  CAS  Google Scholar 

  • Rondon M, Ramirez JA, Lehmann J (2005) Charcoal additions reduce net emissions of greenhouse gases to the atmosphere. In: Proceedings of the 3rd USDA Symposium on Greenhouse Gases and Carbon Sequestration, Baltimore, USA, March 21–24, 2005

  • Rondon M, Lehmann J, Ramirez J, Hurtado M (2007a) Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol Fert Soils 43:699–708

    Article  Google Scholar 

  • Rondon MA, Lehmann J, Ramírez J, Hurtado M (2007b) Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol Ferti Soils 43:699–708

    Article  Google Scholar 

  • Schiemenz K, Eichler-Loebermann B (2010) Biomass ashes and their phosphorus fertilizing effect on different crops. Nutr Cycl Agroecosyst 87:471–482

    Article  Google Scholar 

  • Schneider MPW, Lehmann J, Schmidt MWI (2011) Charcoal quality does not change over a century in a tropical agro-ecosystem. Soil Biol Biochem 43:1992–1994

    Article  CAS  Google Scholar 

  • Sheng GY, Yang MN, Huang MS, Yang K (2005) Influence of pH on pesticide sorption by soil containing wheat residue-derived char. Environ Pollut 134:457–463

    Article  CAS  Google Scholar 

  • Singh PB, Hatton JB, Singh B, Cowie LA, Kathuria A (2010) Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J Environ Qual 39:1224–1235

    Article  CAS  Google Scholar 

  • Smernik RJ (2009) Biochar and sorption of organic compounds. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London

    Google Scholar 

  • Smith JL, Collins HP, Bailey VL (2010) The effect of young biochar on soil respiration. Soil Biol Biochem 42:2345–2347

    Article  CAS  Google Scholar 

  • Sohi SP, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil. Adv Agron 105:47–82

    Article  CAS  Google Scholar 

  • Soinne H, Hovi J, Tammeorg P, Turtola E (2014) Effect of biochar on phosphorus sorption and clay soil aggregate stability. Geoderma 219(220):162–167

    Article  CAS  Google Scholar 

  • Solaiman ZM, Blackwell P, Abbott LK, Storer P (2010) Direct and residual effect of biochar application on mycorrhizal colonization, growth and nutrition of wheat. Aust J Soil Res 48:546–554

    Article  CAS  Google Scholar 

  • Solaiman ZM, Murphy DV, Abbott LK (2012) Biochars influence seed germination and early growth of seedlings. Plant Soil 353:273–287

    Article  CAS  Google Scholar 

  • Sollins P, Homann P, Caldwell BA (1996) Stabilization and destabilization of soils organic matter: mechanisms and controls. Geoderma 74:65–105

    Article  Google Scholar 

  • Song W, Guo M (2012) Quality variations of poultry litter biochar generated at different pyrolysis temperatures. J Anal Appl Pyrol 94:138–145

    Article  CAS  Google Scholar 

  • Sonja S, Glaser B (2012) One step forward toward characterization: some important material properties to distinguish biochars. J Environ Qual 41:1001–1013

    Article  CAS  Google Scholar 

  • Spokas KA (2010) Review of the stability of biochar in soils: predictability of O:C molar ratios. Carbon Manage 1:289–303

    Article  CAS  Google Scholar 

  • Spokas KA, Reicosky DC (2009) Impacts of sixteen different biochars on soil greenhouse gas production. Ann Environ Sci 3:179–193

    CAS  Google Scholar 

  • Spokas KA, Koskinen WC, Baker JM, Reicosky DC (2009) Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere 77:574–581

    Article  CAS  Google Scholar 

  • Spokas KA, Cantrell KB, Novak JM, Archer DA, Ippolito JA, Collins HP, Boateng AA, Lima IM, Lamb MC, McAloon AJ, Lentz RD, Nichols KA (2012) Biochar: a synthesis of its agronomic impact beyond carbon sequestration. J Environ Qual 41:973–989

    Article  CAS  Google Scholar 

  • Stavi I, Lal R (2013) Agroforestry and biochar to offset climate change: a review. Agron Sustain Dev 33:81–96

    Article  Google Scholar 

  • Steiner C (2010) Biochar in agricultural and forestry applications. In: Biochar from agricultural and forestry residues—a complimentary use of waste biomass, U.S.-focused biochar report: assessment of biochar’s benefits for the United States of America

  • Steiner C, Teixeira WG, Lehmann J, Nehls T, Macedo J, Blum WH, Zech W (2007) Long term effect of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 291:275–290

    Article  CAS  Google Scholar 

  • Steiner C, Das KC, Garcia M, Förster B, Zech W (2008) Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic ferralsol. Pedobiologia 51:359–366

    Article  CAS  Google Scholar 

  • Sun H, Zhang H, Min J, Feng Y, Shi W (2015) Controlled-release fertilizer, floating duckweed, and biochar affect ammonia volatilization and nitrous oxide emission from rice paddy fields irrigated with nitrogen-rich wastewater. Paddy Water Environ. doi:10.1007/s10333-015-0482-2

    Google Scholar 

  • Tammeorg P, Parviainen T, Nuutinen V, Simojoki A, Vaara E, Helenius J (2014a) Effects of biochar on earthworms in arable soil: avoidance test and field trial in boreal loamy sand. Agric Ecosyst Environ 191:150–157

    Article  CAS  Google Scholar 

  • Tammeorg P, Simojoki A, Mäkelä P, Stoddard F, Alakukku L, Heleniu J (2014b) Biochar application to a fertile sandy clay loam in boreal conditions: effects on soil properties and yield formation of wheat, turnip rape and faba bean. Plant Soil 374:89–107

    Article  CAS  Google Scholar 

  • Tammeorg P, Simojoki A, Mäkelä P, Stoddard FL, Alakukku L, Helenius J (2014c) Short-term effects of biochar on soil properties and wheat yield formation with meat bone meal and inorganic fertiliser on a boreal loamy sand. Agric Ecosys Environ 191:108–116

    Article  CAS  Google Scholar 

  • Thies J, Rillig MC (2009a) Characteristics of biochar: biological properties. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, pp 85–105

    Google Scholar 

  • Thies JE, Rillig MC (2009b) Characteristics of biochar: biochar properties. In: Lehmann J, Joseph S (eds) Biochar for environmental management—science and technology. Earthscan, London, pp 85–105

    Google Scholar 

  • Thomas SC, Frye S, Gale N, Garmon M, Launchbury R, Machado N, Melamed S, Murray J, Petroff A, Winsborough C (2013) Biochar mitigates negative effects of salt additions on two herbaceous plant species. J Environ Manage 129:62–68

    Article  CAS  Google Scholar 

  • Thu TN, Phuong LBT, Van TM, Hong SN (2015) Effect of water regimes and organic matter strategies on mitigating green house gas emission from rice cultivation and co-benefits in agriculture in Vietnam. Int J Environ Sci Develop 7:85–90

    Article  Google Scholar 

  • Tong XJ, Li JY, Yuan JH, Xu RK (2011) Adsorption of Cu(II) by biochars generated from crop straws. Chem Eng J 172:828–834

    Article  CAS  Google Scholar 

  • Tryon EH (1948) Effect of charcoal on certain physical, chemical, and biological properties of forest soils. Ecol Monograp 18:81–115

    Article  CAS  Google Scholar 

  • Uchimiya M, Lima IM, Klasson KT, Wartelle LH (2010) Contaminant immobilization and nutrient release by biochar soil amendment: roles of natural organic matter. Chemosphere 80:935–940

    Article  CAS  Google Scholar 

  • Uchimiya M, Chang S, Klasson KT (2011a) Screening biochars for heavy metal retention in soil: role of oxygen functional group. J Hazard Mater 190:432–441

    Article  CAS  Google Scholar 

  • Uchimiya M, Klasson KT, Wartelle LH, Lima IM (2011b) Influence of soil properties on heavy metal sequestration by biochar amendment: 1. Copper sorption isotherms and the release of cations. Chemosphere 82:1431–1437

    Article  CAS  Google Scholar 

  • Vaccari FP, Baronti S, Lugato E, Genesio L, Castaldi S, Fornasier F, Miglietta F (2011) Biochar as a strategy to sequester carbon and increase yield in durum wheat. Eur J Agron 34:231–238

    Article  CAS  Google Scholar 

  • Vallad GE, Goodman RM (2004) Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Sci 44:1920–1934

    Article  Google Scholar 

  • Van Zwieten L, Singh B, Joseph S, Kimber S, Cowie A, Chan KY (2009) Biochar and emissions of non-CO2 greenhouse gases from soil. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, pp 227–249

    Google Scholar 

  • Van Zwieten L, Kimber S, Morris S, Chan KY, Downie A, Rust J, Joseph S, Cowie A (2010) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327:235–246

    Article  CAS  Google Scholar 

  • Van Zwieten L, Kimber SWL, Morris SG, Singh BP, Grace PR, Scheer C, Rust J, Downie AE, Cowie AL (2013) Pyrolysing poultry litter reduces N2O and CO2 fluxes. Sci Total Environ 465:279–287

    Article  CAS  Google Scholar 

  • Vanek SJ, Lehmann J (2015) Phosphorus availability to beans via interactions between mycorrhizas and biochar. Plant Soil 395:105–123

    Article  CAS  Google Scholar 

  • Vasilyeva NA, Abiven S, Milanovskiy EY, Hilf M, Rizhkov OV, Schmidt MWI (2011) Pyrogenic carbon quantity and quality unchanged after 55 years of organic matter depletion in a Chernozem. Soil Biol Biochem 43:1985–1988

    Article  CAS  Google Scholar 

  • Ventura M, Sorrenti G, Panzacchi P, George E, Tonon G (2013) Biochar reduces short-term nitrate leaching from a horizon in an apple orchard. J Environ Qual 42:76–82

    Article  CAS  Google Scholar 

  • Verheijen F, Jeffery S, Bastos AC, van der Velde M, Diafas I (2010) Biochar application to soils. A critical scientific review of effects on soil properties, processes, and functions. EUR 24099 EN, Office for the Official Publications of the European Communities, Luxembourg

    Google Scholar 

  • Verhoeven JTA, Arheimer B, Yin CQ, Hefting MM (2006) Regional and global concerns over wetlands and water quality. Trends Ecol Evol 21:96–103

    Article  Google Scholar 

  • Wang XS, Miao HH, He W, Shen HL (2011) Competitive adsorption of Pb(II), Cu(II), and Cd(II) ions on wheat-residue derived black carbon. J Chem Eng Data 56:444–449

    Article  CAS  Google Scholar 

  • Wang C, Lu H, Dong D, Deng H, Strong PJ, Wang H, Wu W (2013) Insight into the effects of biochar on manure composting: evidence supporting the relationship between N2O emission and denitrifying community. Environ Sci Technol 47:7341–7349

    CAS  Google Scholar 

  • Warnock DD, Lehmann J, Kuyper TW, Rillig MC (2007) Mycorrhizal responses to biochar in soil—concepts and mechanisms. Plant Soil 300:9–20

    Article  CAS  Google Scholar 

  • Warnock DD, Mummey DL, McBride B, Major J, Lehmann J, Rillig MC (2010) Influences of non-herbaceous biochar on arbuscular mycorrhizal fungal abundances in roots and soils: results from growth-chamber and field experiments. Appl Soil Ecol 46:450–456

    Article  Google Scholar 

  • Watanabe A, Ikeya K, Kanazaki N, Makabe S, Sugiura Y, Shibat A (2014) Five crop seasons’ records of greenhouse gas fluxes from upland fields with repetitive applications of biochar and cattle manure. J Environ Manage 144:168–175

    Article  CAS  Google Scholar 

  • Wen B, Li RJ, Zhang S, Shan XQ, Fang J, Xiao K, Khan SU (2009) Immobilization of pentachlorophenol in soil using carbonaceous material amendments. Environ Pollut 157:968–974

    Article  CAS  Google Scholar 

  • Whitman T, Enders A, Lehmann J (2014) Pyrogenic carbon additions to soil counteracts positive priming of soil carbon mineralization by plants. Soil Biol Biochem 73:33–41

    Article  CAS  Google Scholar 

  • Windstam S, Nelso EB (2008) Temporal release of fatty acids and sugars in the spermosphere: impacts on Enterobacter cloacae-induced biological control. Appl Environ Microbiol 74:4292–4299

    Article  CAS  Google Scholar 

  • Woolf D, James E, Amonette F, Street-Perrott A, Lehmann J, Joseph S (2010) Sustainable biochar to mitigate global climate change. Nat Commun 1:1–9

    Article  CAS  Google Scholar 

  • Wu M, Feng Q, Sun X, Wang H, Gielen G, Wua W (2015) Rice (Oryza sativa L.) plantation affects the stability of biochar in paddy soil. Sci Rep. doi:10.1038/srep10001

  • Yamato M, Okimori Y, Wibowo IF, Anshori S, Ogawa M (2006) Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut and soil chemical properties in south Sumatra, Indonesia. Soil Sci Plant Nutr 52:489–495

    Article  CAS  Google Scholar 

  • Yan YN, Sheng GY (2003) Pesticide adsorptivity of aged particulate matter arising from crop residue burns. J Agric Food Chem 51:5047–5051

    Article  CAS  Google Scholar 

  • Yanai Y, Toyota K, Okazaki M (2007) Effect of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Sci Plant Nutr 53:181–188

    Article  CAS  Google Scholar 

  • Yang YN, Sheng GY (2003) Enhanced pesticide sorption by soils containing particulate matter from crop residue burns. Environ Sci Technol 37:3635–3639

    Article  CAS  Google Scholar 

  • Yang YN, Sheng GY, Huang MS (2006) Bioavailability of diuron in soil containing wheat-straw-derived char. Sci Total Environ 354:170–178

    Article  CAS  Google Scholar 

  • Yang XB, Ying GG, Peng PA, Wang L, Zhao JL, Zhang LJ, Yuan P, He HP (2010) Influence of biochars on plant uptake and dissipation of two pesticides in an agricultural soil. J Agric Food Chem 58:7915–7921

    Article  CAS  Google Scholar 

  • Yao Y, Gao B, Inyang M, Zimmerman AR, Cao X, Pullammanappallil P, Yang L (2011) Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential. Bioresource Technol 102:6273–6278

    Article  CAS  Google Scholar 

  • Yeardley RB, Lazorchak JM, Gast LC (1996) The potential of an earthworm avoidance test for evaluation of hazardous waste sites. Environ Toxicol Chem 15:1532–1537

    CAS  Google Scholar 

  • Yin B, Crowle D, Sparovek G, De Melo WJ, Borneman J (2000) Bacterial functional redundancy along a soil reclamation gradient. Appl Environ Microbiol 66:4361–4365

    Article  CAS  Google Scholar 

  • Yoo G, Kang H (2012) Effects of biochar addition on greenhouse gas emissions and microbial responses in a short-term laboratory experiment. J Environ Qual 41:1193–1202

    Article  CAS  Google Scholar 

  • Yu XY, Ying GG, Kookana RS (2006) Sorption and desorption behavior of diuron in soil amended with charcoal. J Agric Food Chem 54:8545–8550

    Article  CAS  Google Scholar 

  • Yu XY, Ying GG, Kookana RS (2009) Reduced plant uptake of pesticides with biochar addition to soil. Chemosphere 76:665–671

    Article  CAS  Google Scholar 

  • Yu X, Pan L, Ying GG, Kookana RS (2010) Enhanced and irreversible sorption of pesticide pyrimethanil by soil amended with biochars. J Environ Sci 22:615–620

    Article  CAS  Google Scholar 

  • Yu XY, Mu CL, Gu C, Liu C, Liu XJ (2011) Impact of woodchip biochar amendment on the sorption and dissipation of pesticide acetamiprid in agricultural soils. Chemosphere 85:1284–1289

    Article  CAS  Google Scholar 

  • Zackrisson O, Nilsson MC, Wardle DA (1996) Key ecological function of charcoal from wildfire in the boreal forest. Oikos 77:10–19

    Article  Google Scholar 

  • Zhang M, Ok YS (2014) Biochar soil amendment for sustainable agriculture with carbon and contaminant sequestration. Carbon Manage 5:255–257

    Article  CAS  Google Scholar 

  • Zhang P, Sheng GY, Feng YC, Miller DM (2005) Role of wheat-residue-derived char in the biodegradation of benzonitrile in soil: nutritional stimulation versus adsorptive inhibition. Environ Sci Technol 39:5442–5448

    Article  CAS  Google Scholar 

  • Zhang Q, Yang Z, Wu W (2008) Role of crop residue management in sustainable agricultural development in the North China Plain. J Sust Agric 32:137–148

    Article  Google Scholar 

  • Zhang AF, Cui LQ, Pan GX, Li LQ, Hussain Q, Zhang XH, Zheng JW, Crowley D (2010) Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agric Ecosyst Environ 139:469–475

    Article  CAS  Google Scholar 

  • Zhang A, Bian R, Pan G, Cui L, Hussain Q, Li L, Zheng J, Zheng J, Zhang X, Han X, Yu X (2012a) Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: a field study of 2 consecutive rice growing cycles. Field Crops Res 127:153–160

    Article  Google Scholar 

  • Zhang A, Liu Y, Pan G, Hussain Q, Li L, Zheng J, Zhang X (2012b) Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant Soil 351:263–275

    Article  CAS  Google Scholar 

  • Zhang A, Bian R, Hussain Q, Li l, Pan G, Zheng J, Zhang X, Zheng J (2013a) Change in net global warming potential of a rice–wheat cropping system with biochar soil amendment in a rice paddy from China. Agric Ecosyst Environ 173:37–45

    Article  Google Scholar 

  • Zhang XK, Li Q, Liang WJ, Zhang M, Bao XL, Xie ZB (2013b) Soil nematode response to biochar addition in a Chinese wheat field. Pedosphere 23:98–103

    Article  CAS  Google Scholar 

  • Zhang D, Pan G, Wu G, Kibue GW, Li L, Zhang X, Zheng J, Zheng J, Cheng K, Joseph S, Liu X (2016) Biochar helps enhance maize productivity and reduce greenhouse gas emissions under balanced fertilization in a rainfed low fertility inceptisol. Chemosphere 142:106–113

    Article  CAS  Google Scholar 

  • Zhao X, Wang J, Wang S, Xing G (2014) Successive straw biochar application as a strategy to sequester carbon and improve fertility: a pot experiment with two rice/wheat rotations in paddy soil. Plant Soil 378:279–294

    Article  CAS  Google Scholar 

  • Zheng W, Guo M, Chow T, Bennett DN, Rajagopalan N (2010) Sorption properties of greenwaste biochar for two triazine pesticides. J Hazard Mater 181:121–126

    Article  CAS  Google Scholar 

  • Zimmerman AR (2010) Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ Sci Technol 44:1295–1301

    Article  CAS  Google Scholar 

  • Zimmerman AR, Gao B, Ahn MY (2011) Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol Biochem 43:1169–1179

    Article  CAS  Google Scholar 

  • Zwart DC, Kim SH (2012) Biochar amendment increases resistance to stem lesions caused by Phytophthora spp. in tree seedlings. Hort Sci 47:1736–1740

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Farooq.

Additional information

Responsible editor: Jianming Xu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, M., Farooq, M., Nawaz, A. et al. Biochar for crop production: potential benefits and risks. J Soils Sediments 17, 685–716 (2017). https://doi.org/10.1007/s11368-016-1360-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-016-1360-2

Keywords

Navigation