Skip to main content
Log in

Successes and limitations of phytotechnologies at field scale: outcomes, assessment and outlook from COST Action 859

  • SOILS, SEC 2 • GLOBAL CHANGE, ENVIRON RISK ASSESS, SUSTAINABLE LAND USE • REVIEW ARTICLE
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Many agricultural and brownfield soils are polluted and more have become marginalised due to the introduction of new, risk-based legislation. The European Environment Agency estimates that there are at least 250,000 polluted sites in the member states that require urgent remedial action. There is also significant volumes of wastewaters and dredged polluted sediments. Phytotechnologies potentially offer a cost-effective in situ alternative to conventional technologies for remediation of low to medium-contaminated matrices, e.g. soils, sediments, tailings, solid wastes and waters. For further development, social and commercial acceptance, there is a clear requirement for up-to-date information on successes and failures of these technologies based on evidence from the field. This review reports the outcomes from several integrated experimental attempts to address this at both field and market level in the 29 countries participating in COST Action 859.

Results and discussion

This review offers insight into the deployment of promising and emergent in situ phytotechnologies, for sustainable remediation and management of contaminated soils and water, that integrative research findings produced between 2004 and 2009 by members of COST Action 859. Many phytotechnologies are at the demonstration level, but relatively few have been applied in practice on large sites. They are not capable of solving all problems. Those options that may prove successful at market level are (a) phytoextraction of metals, As and Se from marginally contaminated agricultural soils, (b) phytoexclusion and phytostabilisation of metal- and As-contaminated soils, (c) rhizodegradation of organic pollutants and (d) rhizofiltration/rhizodegradation and phytodegradation of organics in constructed wetlands. Each incidence of pollution in an environmental compartment is different and successful sustainable management requires the careful integration of all relevant factors, within the limits set by policy, social acceptance and available finances. Many plant stress factors that are not evident in short-term laboratory experiments can limit the effective deployment of phytotechnologies at field level. The current lack of knowledge on physicochemical and biological mechanisms that underpin phytoremediation, the transfer of contaminants to bioavailable fractions within the matrices, the long-term sustainability and decision support mechanisms are highlighted to identify future R&D priorities that will enable potential end-users to identify particular technologies to meet both statutory and financial requirements.

Conclusions

Multidisciplinary research teams and a meaningful partnership between stakeholders are primary requirements that determine long-term ecological, ecotoxicological, social and financial sustainability of phytotechnologies and to demonstrate their efficiency for the solution of large-scale pollution problems. The gap between research and development for the use of phytoremediation options at field level is partly due to a lack of awareness by regulators and problem owners, a lack of expertise and knowledge by service providers and contractors, uncertainties in long-term effectiveness and difficulties in the transfer of particular metabolic pathways to productive and widely available plants. Networks such as COST Action 859 are highly relevant to the integration of research activity, maintenance of projects that demonstrate phytoremediation at a practical field scale and to inform potential end-users on the most suitable techniques. Biomass for energy and other financial returns, biodiversity and ecological consequences, genetic isolation and transfer of plant traits, management of plant–microorganism consortia in terrestrial systems and constructed wetlands, carbon sequestration and soil and water multi-functionality are identified as key areas that need to be incorporated into existing phytotechnologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BCF:

Bioconcentration factor

BOD:

Biochemical oxygen demand

BTEX:

Benzene, toluene, ethylbenzene, and xylene

CEC:

Cation exchange capacity

CDTA:

1,2-Cyclohexane diamino-tetraacetate

COD:

Chemical oxygen demand

CW:

Constructed wetlands

DTPA:

Diethylene triamine pentaacetic acid

DW:

Dry weight

EC:

Electrical conductivity

EDDS:

Ethylenediamine-N,N′-disuccinic acid

EDTA:

Ethylenediaminetetraacetic acid

E h :

Reduction potential

GMO:

Genetically modified organism

MCB:

Monochlorobenzene

Me:

Metal

MGDA:

Methylglycinediacetic acid

NTA:

Nitrilotriacetic acid

OX:

Organic xenobiotic(s)

PAH:

Polycyclic aromatic hydrocarbons

SRC:

Short rotation coppice

TE:

Trace element(s)

TECS:

Trace element-contaminated soil

TF:

Transfer factor

References

  • Adeola S, Revitt M, Shutes B, Garelick H, Jones H, Jones C (2009) Constructed wetland control of BOD levels in airport runoff. Int J Phytorem 11:1–10

    Google Scholar 

  • Adler A, Dimitriou I, Aronsson P, Verwijst T, Weiha M (2008) Wood fuel quality of two Salix viminalis stands fertilised with sludge, ash and sludge–ash mixtures. Biomass Bioenergy 32:914–925

    CAS  Google Scholar 

  • Adriaensen K, Bert V, Böhm K, Brignon J-M, Cochet N, Cundy A, Denys S, Friesl-Hanl W, Gombert D, Haag R, Hurst S, Jaunatre R, Jollivet P, Kumpiene J, Magnie M-C, Marschner B, Mench M, Mikhalovsky S, Müller I, Onwubuya K, Puschenreiter M, Raspail F, Renella G, Rouïl L, Ruttens A, Schoefs O, Soularue JP, Stolz R, Tack K, Teasdale P, Tlustoš P, Vangronsveld J, Vialletelle F, Waite S (2008) Sustainable management of trace element contaminated soils (SUMATECS)—development of a decision tool system and its evaluation for practical application. Project no. SN-01/20. Final Research Report, Universität für Bodenkultur Wien (BOKU). 314 pp. Available at http://www.snowman-era.net/downloads/SUMATECS_FINAL_REPORT.pdf, accessed June 23, 2009

  • Ascher J, Ceccherini MT, Landi L, Mench M, Pietramellara G, Nannipieri P, Renella G (2009) Composition, biomass and activity of microflora, and leaf yields and foliar elemental concentrations of lettuce, after in situ stabilization of an arsenic-contaminated soil. Appl Soil Ecol 41:351–359

    Google Scholar 

  • Assunção AGL, Bleeker P, ten Bookum WM, Vooijs R, Schat H (2008) Intraspecific variation of metal preference patterns for hyperaccumulation in Thlaspi caerulescens: evidence from binary metal exposures. Plant Soil 303:289–299

    Google Scholar 

  • Azaizeh H, Salhani N, Sebesvari Z, Shardendu S, Emons H (2006) Phytoremediation of selenium using subsurface-flow constructed wetland. Int J Phytorem 8:187–198

    CAS  Google Scholar 

  • Bani A, Echevarria G, Sulce S, Morel JL, Mullai A (2007) In-situ phytoextraction of Ni by a native population of Alyssum murale on an ultramafic site (Albania). Plant Soil 293:79–89

    CAS  Google Scholar 

  • Bani A, Echevarria G, Sulçe S, Morel JL (2008) Development of a technology for extensive phytoextraction of nickel on an ultramafic site (Albania). In: Bert V (ed) COST Action 859, Phytotechnologies in practice: biomass production, agricultural methods, legacy, legal and economic aspects. Verneuil-en-Halatte, France, p 17

  • Behmer ST, Lloyd CM (2005) Metal hyperaccumulation in plants: mechanisms of defence against insect herbivores. Funct Ecol 19:55–66

    Google Scholar 

  • Bert V, Tack K, Bercquet A, Cochet N, Vialletelle F, Magnié MC (2008a) Prospects in biomass valorization from phytoextraction of Cd and Zn. In: Bert V (ed) COST Action 859, Phytotechnologies in practice: biomass production, agricultural methods, legacy, legal and economic aspects. Verneuil-en-Halatte, France, pp 48–49

  • Bert V, Lors Ch, Laboudigue A, Tack K, Damidot D, Bureau J (2008b) Use of phytostabilisation to remediate metal polluted dredged sediment. In: Abriak NE, Damidot D, Zentar R (eds) Proceedings of the International Symposium on Sediment Management (I2SM). Ecole des Mines de Douai, Lille, pp 275–279

    Google Scholar 

  • Bert V, Seuntjens P, Dejonghe W, Lacherez S, Thi Thanh Thuy H, Vandecasteele B (2009) Phytoremediation as a management option for contaminated sediments in tidal marshes, flood control areas and dredged sediment landfill sites. Environ Sci Pollut Res 16:745–764

    CAS  Google Scholar 

  • Bes C (2008) Phytoremédiation des sols d’un site de traitement du bois contaminés par le cuivre. PhD dissertation, Ecole Doctorale Sciences & Environnement, Spécialité Ecologie Evolutive, Fonctionnelle et des Communautés, Université de Bordeaux 1, Talence, France, 293 pp

  • Bes C, Mench M, Aulen M, Gasté H, Taberly J (2010) Spatial variation of plant communities and shoot Cu concentrations of plant species at a timber treatment site. Plant Soil (doi:10.1007/s11104-009-0198-4)

  • Blake L, Goulding KWT (2002) Effects of atmospheric deposition, soil pH and acidification on heavy metal contents in soils and vegetation of semi-natural ecosystems at Rothamsted Experimental Station, UK. Plant Soil 240:235–251

    CAS  Google Scholar 

  • Blaylock M, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31:860–865

    Google Scholar 

  • Braeckevelt M, Mirschel G, Wiessner A, Rueckert M, Reiche N, Vogt C, Schultz A, Paschke H, Kuschk P, Kaestner M (2008) Treatment of chlorobenzene-contaminated groundwater in a pilot-scale constructed wetland. Ecol Eng 33:45–53

    Google Scholar 

  • Bragato C, Brix H, Malagoli M (2006) Accumulation of nutrients and heavy metals in Phragmites australis (Cav.) Trin. ex Steudel and Bolboschoenus maritimus (L.) Palla in a constructed wetland of the Venice lagoon watershed. Environ Pollut 144:967–975

    CAS  Google Scholar 

  • Brazier-Hicks M, Edwards LA, Edwards R (2007) Selection of plants for roles in phytoremediation: the importance of glucosylation. Plant Biotech J 5:627–635

    CAS  Google Scholar 

  • Brignon JM (2008) Socio-economic assessment of phytoremediation projects. In: Bert V (ed) COST Action 859, Phytotechnologies in practice: biomass production, agricultural methods, legacy, legal and economic aspects. Verneuil-en-Halatte, France, p 47

  • Brown S, Sprenger M, Maxemchuk A, Compton H (2005) Ecosystem function in alluvial tailings after biosolids and lime addition. J Environ Qual 34:139–148

    CAS  Google Scholar 

  • Burgos P, Perez-de-Mora A, Madejon P, Cabrera F, Madejon E (2008) Trace elements in wild grasses: a phytoavailability study on a remediated field. Environ Geochem Health 30:109–114

    CAS  Google Scholar 

  • Butcher DJ (2009) Phytoremediation of lead in soil: recent applications and future prospects. Appl Spectrosc Rev 44:123–139

    CAS  Google Scholar 

  • Caballero Lajarín A, Faz Cano Á, Lobera JB (2006) Vertical flow surface constructed wetland as a treatment to remove pollutants from the pig slurry liquid phase: study case in La Aljorra. In: Dias S (ed) Phytotechnologies lessons from pilot and field scale, COST Action 859, Sintra, Portugal, p 40

  • Calheiros CSC, Rangel AOSS, Castro PML (2008) The effects of tannery wastewater on the development of different plant species and chromium accumulation in Phragmites australis. Arch Environ Contam Toxicol 55:404–414

    CAS  Google Scholar 

  • Carrier M, Mench M, Loppinet-Serani A, Cansell F, Aymonier C, Marias F, Mercadier J (2008) Valorisation of phytoremediation biomasses with supercritical water. In: Bert V (ed) COST Action 859, Phytotechnologies in practice: biomass production, agricultural methods, legacy, legal and economic aspects. Verneuil-en-Halatte, France, pp 51–52

  • CETIOM (2009) Le tournesol: en remplacement d’une céréale…oui mais attention à la réglementation. Available at http://www.cetiom.fr/index.php?id=11360, accessed October 6, 2009

  • Chaney RF, Angle JS, Baker AJM, Reeves RD, Roseberg RJ, Simmons RW, Broadhurst CL (2008) Phytoextraction and phytomining of Ni and Cd from contaminated or mineralized soils. In: Bert V (ed) COST Action 859, Phytotechnologies in practice: biomass production, agricultural methods, legacy, legal and economic aspects. Verneuil-en-Halatte, France, pp 15–16

  • Chapman MM, Balasubramaniyam A, Harvey PJ (2009) Drought-like symptoms associated with growth of Festuca arundinaceae in soil contaminated with naphthalene. In: Erdei L (ed) Uptake, sequestration and detoxification—an integrated approach, COST Action 859. University of Szeged, Hungary, p 50

    Google Scholar 

  • Claus D, Dietze H, Gerth A, Grosser W, Hebner A (2007) Application of agronomic practice improves phytoextraction on a multipolluted site. J Environ Eng Landsc Manag 15:208–212

    Google Scholar 

  • Clemens S, Palmgren MG, Krämer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315

    CAS  Google Scholar 

  • Clemente R, Walker DJ, Bernal MP (2005) Uptake of heavy metals and As by Brassica juncea grown in a contaminated soil in Aznalcollar (Spain): the effect of soil amendments. Environ Pollut 138:46–58

    CAS  Google Scholar 

  • Cohen Y, Cohen E (2007) From dairy raw waste water to bird park. In: Baltrenaite E (ed) Fate of pollutants in the plant/rhizosphere system: fundamental aspects and their significance for field applications—prospects and research needs, COST Action 859. VGTU Press Technica, Vilnius, pp 27–28

    Google Scholar 

  • Conesa HM, Robinson BH, Schulin R, Nowack B (2007) Growth of Lygeum spartum in acid mine tailings: response of plants developed from seedlings, rhizomes and at field conditions. Environ Pollut 145:700–707

    CAS  Google Scholar 

  • Davies LC, Pedro IS, Ferreira RA, Freire FG, Novais JM, Martins-Dias S (2008) Constructed wetland treatment system in textile industry and sustainable development. Water Sci Technol 58:2017–2023

    CAS  Google Scholar 

  • Dickinson NM (2006) Phytoremediation of industrially-contaminated sites using trees. NATO Science Series: IV: Earth and Environmental Sciences 68:229–240

    Google Scholar 

  • Dickinson NM, Baker A, Doronila A, Laidlaw S, Reeves R (2009) Phytoremediation of inorganics: realism and synergies. Int J Phytorem 11:97–114

    CAS  Google Scholar 

  • DOER (1999) Evaluation of dredged material for phytoreclamation suitability. Technical note DOER-C3. Available at http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA365446&Location=U2&doc=GetTRDoc.pdf, accessed October 6, 2009

  • Dominguez MT, Maranon T, Murillo JM, Schulin R, Robinson BH (2008) Trace element accumulation in woody plants of the Guadiamar Valley, SW Spain: a large-scale phytomanagement case study. Environ Pollut 152:50–59

    CAS  Google Scholar 

  • Do Nascimento CW, Xing BS (2006) Phytoextraction: a review on enhanced metal availability and plant accumulation. Sci Agric 63:299–311

    Google Scholar 

  • EEA (European Environment Agency) (2007) Progress in management of contaminated sites, CSI 015, DK-1050 Copenhagen K, Denmark. Available at http://themes.eea.europa.eu/IMS/IMS/ISpecs/ISpecification20041007131746/IAssessment1152619898983/view_content, accessed October 6, 2009

  • Epelde L, Hernandez-Allica J, Becerril JM, Blanco F, Garbisu C (2008) Effects of chelates on plants and soil microbial community: comparison of EDTA and EDDS for lead phytoextraction. Sci Total Environ 401:21–28

    CAS  Google Scholar 

  • Erdei L, Vashegyi A, Farsang A, Cser V, Barta K, Dormány G, Mezősi G, Dergez A (2008) Phytoextraction in practice: critical values for efficiency and remediation time. In: Bert V (ed) COST Action 859, Phytotechnologies in practice: biomass production, agricultural methods, legacy, legal and economic aspects. Verneuil-en-Halatte, France, pp 18–19

  • Fässler E, Robinson B, Schulin R, Gupta SK (2007) Soil amendments affecting trace element uptake and distribution in crop plants. In: Baltrenaite E (ed) Fate of pollutants in the plant/rhizosphere system: fundamental aspects and their significance for field applications—prospects and research needs, COST Action 859. VGTU Press Technica, Vilnius, pp 24–26

    Google Scholar 

  • Faz A, Lobera JB, Caballero A (2007) Vertical surface and horizontal sub-surface flow constructed wetlands. Phytoremediation of pig slurry. In: Baltrenaite E (ed) Fate of pollutants in the plant/rhizosphere system: fundamental aspects and their significance for field applications—prospects and research needs, COST Action 859. VGTU Press Technica, Vilnius, p 137

    Google Scholar 

  • Fischerová Z, Tlustoš P, Száková J, Šichorova K (2006) A comparison of phytoremediation capability of selected plant species for given trace elements. Environ Pollut 144:93–100

    Google Scholar 

  • Freeman JL, Quinn CF, Lindblom SD, Klamper EM, Pilon-Smits EAH (2009) Selenium protects the hyperaccumulator Stanleya pinnata against black-tailed prairie dog herbivory in native seleniferous habitats. Amer J Bot 96:1075–1085

    CAS  Google Scholar 

  • French CJ, Dickinson NM, Putwain PD (2006) Woody biomass phytoremediation of contaminated brownfield land. Environ Pollut 141:387–395

    CAS  Google Scholar 

  • Frérot H, Lefebvre C, Gruber W, Collin C, dos Santos A, Escarre J (2006) Specific interactions between local metallicolous plants improve the phytostabilization of mine soils. Plant Soil 282:53–65

    Google Scholar 

  • Friesl W, Friedl J, Platzer K, Horak O, Gerzabek MH (2006) Remediation of contaminated agricultural soils near a former Pb/Zn smelter in Austria: batch, pot and field experiments. Environ Pollut 144:40–50

    CAS  Google Scholar 

  • Gawronski SW, Gawronska H (2007) Phytoremediation—some case studies conducted at WAU. NATO Science Series IV Earth and Environmental Sci 75:159–175

    Google Scholar 

  • Gawronski S, Majorek M, Gawronska H (2006) Phytoremediation of PAHs from the air. In: Dias S (ed) Phytotechnologies Lessons from Pilot and Field Scale, COST Action 859, Sintra, Portugal. p 48

  • Gawronski SW, Graczyk J, Gawronska H (2007) Air phytoremediation—removal of particulate matter, PAHs and metals by higher plants. In: Baltrenaite E (ed) Fate of pollutants in the plant/rhizosphere system: fundamental aspects and their significance for field applications—prospects and research needs, COST Action 859. VGTU Press Technica, Vilnius, p 151

    Google Scholar 

  • Gawronska H, Przybysz A, Szalacha E, Wrochna M, Słowiński A (2009) Biological basis of mode of action of the protective role of Asahi SL against plant stressors. Plant abiotic stress from signaling to development. 2nd Meeting of the INPAS, 14–17 May, Tartu Estonia. p 59. Available at http://www.ut.ee/INPAS/INPAS_abstractbook.pdf, accessed on October 8, 2009

  • Gerth A, Hebner A (2007) Risk assessment and remediation of military and ammunition sites. NATO Science Series IV Earth and Environmental Sci 75:45–57

    Google Scholar 

  • Ginocchio R, Carvallo G, Toro I, Bustamante E, Silva Y, Sepulveda N (2004) Micro-spatial variation of soil metal pollution and plant recruitment near a copper smelter in Central Chile. Environ Pollut 127:343–352

    CAS  Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393

    CAS  Google Scholar 

  • Gonzalias AE, Kuschk P, Wiessner A, Jank M, Kastner M, Koser H (2007) Treatment of an artificial sulphide containing wastewater in subsurface horizontal flow laboratory-scale constructed wetlands. Ecol Eng 31:259–268

    Google Scholar 

  • Gray CW, Dunham SJ, Dennis PG, Zhao FJ, McGrath SP (2006) Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud. Environ Pollut 142:530–539

    CAS  Google Scholar 

  • Greger M. Landberg T (2008) Influence of Salix cultivation on Cd in wheat grains. In: Bert V (ed) COST Action 859, Phytotechnologies in practice: biomass production, agricultural methods, legacy, legal and economic aspects. Verneuil-en-Halatte, France, p 76

  • Grispen VJM (2009) Exploring cadmium phyto-extraction with Brassica napus and Nicotiana tabacum: breeding and selection versus genetic engineering. PhD dissertation, Vreij Amsterdam Universiteit, Amsterdam, 120 pp

  • Grispen VMJ, Nelissen HJM, Verkleij JAC (2006) Phytoextraction with Brassica napus L.: a tool for sustainable management of heavy metal contaminated soils. Environ Pollut 144:77–83

    CAS  Google Scholar 

  • Hammer D, Keller C (2003) Phytoextraction of Cd and Zn with Thlaspi caerulescens in field trials. Soil Use Manage 19:144–149

    Google Scholar 

  • Hartley W, Dickinson NM, Riby P, Lepp NW (2009a) Arsenic mobility in brownfield soils amended with green waste compost or biochar and planted with Miscanthus. Environ Pollut 157:2654–2662

    CAS  Google Scholar 

  • Hartley W, Dickinson NM, Clemente R, French C, Piearce TG, Sparke S, Lepp NW (2009b) Arsenic stability and mobilization in soil at an amenity grassland overlying chemical waste (St. Helens, UK). Environ Pollut 157:849–856

    Google Scholar 

  • Hauser MT (2008) The potential of association studies for heavy metal remediation technologies by willow (Salix caprea). In: Lišková D, Lux A, Martinka M (eds) Contaminants and nutrients availability, accumulation/exclusion and plant–microbia–soil interactions, COST Action 859. Mgr. P Cibulka, Copycentrum PACI, Bratislava, p 20

    Google Scholar 

  • Herzig R, Nehnevajova E, Bourigault C, Schwitzguébel J-P (2007) Fast reduction of soluble zinc on a metal contaminated site using selected tobacco plants and appropriate fertilization techniques. In: Baltrenaite E (ed) Fate of pollutants in the plant/rhizosphere system: fundamental aspects and their significance for field applications—prospects and research needs, COST Action 859. VGTU Press Technica, Vilnius, pp 67–68

    Google Scholar 

  • Huber C, Bartha B, Harpaintner R, Schroder P (2009) Metabolism of acetaminophen (paracetamol) in plants—two independent pathways result in the formation of a glutathione and a glucose conjugate. Environ Sci Pollut Res 16:206–213

    CAS  Google Scholar 

  • Huguet S, Laboudigue A, Sarret G, Bert V (2007) Phytoextraction and hyperaccumulating plant: is it possible? In: Baltrenaite E (ed) Fate of pollutants in the plant/rhizosphere system: fundamental aspects and their significance for field applications—prospects and research needs, COST Action 859. VGTU Press Technica, Vilnius, pp 202–203

    Google Scholar 

  • Ibekwe AM, Lyon SR, Leddy M, Jacobson-Meyers M (2007) Impact of plant density and microbial composition on water quality from a free water surface constructed wetland. J Appl Microbiol 102:921–936

    CAS  Google Scholar 

  • Imfeld G, Braeckevelt M, Kuschk P, Richnow HH (2009) Monitoring and assessing processes of organic chemicals removal in constructed wetlands. Chemosphere 74:349–362

    CAS  Google Scholar 

  • Istriteanu D, Nita V (2007) Phytoextraction of metals using Calendula officinalis, Zea mays, and Plantago lanceolata. In: Baltrenaite E (ed) Fate of pollutants in the plant/rhizosphere system: fundamental aspects and their significance for field applications—prospects and research needs, COST Action 859. VGTU Press Technica, Vilnius, pp 114–115

    Google Scholar 

  • Janouskova M, Pavlikova D, Vosatka M (2006) Potential contribution of arbuscular mycorrhiza to cadmium immobilisation in soil. Chemosphere 65:1959–1965

    CAS  Google Scholar 

  • Jensen JK, Holm PE, Nejrup J, Larsen MB, Borggaard OK (2009) The potential of willow for remediation of heavy metal polluted calcareous urban soils. Environ Pollut 157:931–937

    CAS  Google Scholar 

  • Juhanson J, Truu J, Heinaru E, Heinaru A (2007) Temporal dynamics of microbial community in soil during phytoremediation field experiment. J Environ Eng Landsc Manag 15:213–220

    Google Scholar 

  • Kayser A, Wenger K, Keller A, Attiger W, Felix HR, Gupta SK, Schulin R (2000) Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil: the use of NTA and sulphur amendments. Environ Sci Technol 34:1778–1783

    CAS  Google Scholar 

  • Kechit F (2008) Analyse de risques résiduels après la phytoextraction de l’arsenic par la fougère Pteris vittata L. Master dissertation, University Bordeaux 1, Talence, France, 17 pp

  • Keller C, Hammer D, Kayser A, Richner W, Brodbeck M, Sennhauser M (2003) Root development and heavy metal phytoextraction efficiency: comparison of different plant species in the field. Plant Soil 249:67–81

    CAS  Google Scholar 

  • Kiesewalter S, Roehricht C (2008) The use of contaminated soil—cultivation of biomass and its valorization as a source of energy/organic matter on arable and grassland on different trace element contamination level. Saxon State Agency for the Environment, Agriculture and Geology, Dresden, Germany. ISSN 1867-2868

  • Kim KJ, Kil MJ, Jeong MI, Kim HD, Yoo EH, Jeong SJ, Pak CH, Son KC (2009) Determination of the efficiency of formaldehyde removal according to the percentage volume of pot plants occupying a room. Korean J Hortic Sci 27:305–311

    CAS  Google Scholar 

  • Klang-Westin E, Eriksson J (2003) Potential of Salix as phytoextractor for Cd on moderately contaminated soils. Plant Soil 249:127–137

    CAS  Google Scholar 

  • Koelbener A, Ramseier D, Suter M (2008) Competition alters plant species response to nickel and zinc. Plant Soil 303:241–251

    CAS  Google Scholar 

  • Kolbas A, Mench M, Herzig R, Nehnevajova E (2009) Potential use of sunflower for the phytoremediation of Cu-contaminated soils at a wood treatment site. In: Erdei L (ed) Uptake, sequestration and detoxification—an integrated approach, COST Action 859, Szeged, Hungary, pp 56–57

  • Konnerup D, Koottatep T, Brix H (2009) Treatment of domestic wastewater in tropical, subsurface flow constructed wetlands planted with Canna and Heliconia. Ecol Eng 35:248–257

    Google Scholar 

  • Koopmans GF, Romkens PFAM, Fokkema MJ, Song J, Luo YM, Japenga J, Zhao FJ (2008) Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils. Environ Pollut 156:905–914

    CAS  Google Scholar 

  • Korkusuz EA (2005) Manual of practice on constructed wetlands (CWs) used for wastewater treatment and reuse in Mediterranean countries. MED-REUNET II Support Programme (EC project no. INCO-CT-2003-502453), AGBAR Foundation, Barcelona, Spain

  • Korkusuz EA, Beklioglu M, Demirer GN (2007) Use of blast furnace granulated slag as a substrate in vertical flow reed beds: field application. Bioresource Technol 98:2089–2101

    Google Scholar 

  • Kos B, Grcman H, Lestan D (2003) Phytoextraction of lead, zinc and cadmium from soil by selected plants. Plant Soil Environ 49:548–553

    CAS  Google Scholar 

  • Kowalska J, Huszal S, Sawicki MG, Asztemborska M, Stryjewska E, Szalacha E, Golimowski J, Gawronski SW (2004) Voltammetric determination of platinum in plant material. Electroanalysis 16:1266–1270

    CAS  Google Scholar 

  • Kumpiene J, Lagerkvist A, Maurice C (2008) Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—a review. Waste Manage 28:215–225

    CAS  Google Scholar 

  • Kuschk P, Wiessner A, Paredes D, Kastner M, Munch C, Muller RA (2008) Wetlands—future potential and research need. Chemie Ingenieur Technik 80:1785–1793

    CAS  Google Scholar 

  • Langergraber G (2008) Modeling of processes in subsurface flow constructed wetlands: a review. Vadose Zone J 7:830–842

    Google Scholar 

  • Lebeau T, Braud A, Jezequel K (2008) Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review. Environ Pollut 153:497–522

    CAS  Google Scholar 

  • Lepp NW, Clemente R (2007) Mobility of metals and metalloids in the soils of two historic polluted sites in N.W. England. In: Baltrenaite E (ed) Fate of pollutants in the plant/rhizosphere system: fundamental aspects and their significance for field applications—prospects and research needs, COST Action 859. VGTU Press Technica, Vilnius, pp 16–17

    Google Scholar 

  • Liphadzi MS, Kirkham MB, Mankin KR, Paulsen GM (2003) EDTA-assisted heavy-metal uptake by poplar and sunflower grown at a long-term sewage-sludge farm. Plant Soil 257:171–182

    CAS  Google Scholar 

  • Loppinet-Serani A, Carrier M, Cansell F, Aymonier C, Mench M, Marias F, Mercadier J (2008) A global environmental strategy: from soil depollution to materials valorisation with supercritical water. 11th European Meeting on Supercritical Fluids: New perspectives in Supercritical fluids: Nanoscience, Materials and Processing, Session Materials, May 4–7, Barcelona, Spain

  • Macek T, Rezek J, Vrchotova B, Doubsky J, Mackova M, Triska J, Demnerova K (2009) Accumulation and transformation of chlorinated xenobiotics in plants. In: Erdei L (ed) Uptake, sequestration and detoxification—an integrated approach, COST Action 859. University of Szeged, Hungary, p 16

    Google Scholar 

  • Madejon P, Murillo JM, Maranon T, Cabrera F, Soriano MA (2003) Trace element and nutrient accumulation in sunflower plants two years after the Aznalcollar mine spill. Sci Total Environ 307:239–257

    CAS  Google Scholar 

  • Madejon P, Murillo J, Maranon T, Cabrera F (2006) Bioaccumulation of trace elements in a wild grass three years after the Aznalcollar mine spill (south Spain). Environ Monit Assess 114:169–189

    CAS  Google Scholar 

  • Maine MA, Sune N, Hadad H, Sanchez G, Bonetto C (2009) Influence of vegetation on the removal of heavy metals and nutrients in a constructed wetland. J Environ Manage 90:355–363

    CAS  Google Scholar 

  • Małachowska-Jutsz A, Krajewska K, Wiszniowski J (2008) Plant mycorhization versus effectiveness of phytoremediation of soil polluted with hydrocarbons. In: Bert V (ed) COST Action 859, Phytotechnologies in practice: biomass production, agricultural methods, legacy, legal and economic aspects. Verneuil-en-Halatte, France, p 44

  • Manceau A, Nagy KL, Marcus MA, Lanson M, Geoffroy N, Jacquet T, Kirpichtchikova T (2008) Formation of metallic copper nanoparticles at the soil–root interface. Environ Sci Technol 42:1766–1772

    CAS  Google Scholar 

  • Marchiol L, Sacco P, Assolari S, Zerbi G (2004) Reclamation of polluted soil: phytoremediation potential of crop-related Brassica species. Water Air Soil Pollut 158:345–356

    CAS  Google Scholar 

  • Marchiol L, Fellet G, Perosa D, Zerbi G (2007) Removal of trace metals by Sorghum bicolor and Helianthus annuus in a site polluted by industrial wastes: a field experience. Plant Physiol Biochem 45:379–387

    CAS  Google Scholar 

  • Marmiroli N, Marmiroli M, Maestri E (2007) Phytoremediation and phytotechnologies: a review for the present and the future. NATO Science Series IV Earth Environ Sci 75:89–108

    Google Scholar 

  • Marques APGC, Oliveira RS, Samardjieva KA, Pissarra J, Rangel AOSS, Castro PML (2007) Solanum nigrum grown in contaminated soil: effect of arbuscular mycorrhizal fungi on zinc accumulation and histolocalisation. Environ Pollut 145:691–699

    CAS  Google Scholar 

  • Mastretta C, Taghavi S, van der Lelie D, Mengoni A, Galardi F, Gonnelli C, Barac T, Boulet J, Weyens N, Vangronsveld J (2009) Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. Int J Phytorem 11:251–267

    CAS  Google Scholar 

  • Mathews S, Ma LQ, Rathinasabapathi B, Stamps RH (2009) Arsenic reduced scale-insect infestation on arsenic hyperaccumulator Pteris vittata L. Environ Exper Bot 65:282–286

    CAS  Google Scholar 

  • Maxted AP, Black CR, West HM, Crout NMJ, McGrath SP, Young SD (2007) Phytoextraction of cadmium and zinc from arable soils amended with sewage sludge using Thlaspi caerulescens: development of a predictive model. Environ Pollut 150:363–372

    CAS  Google Scholar 

  • McGrath SP, Lombi E, Gray CW, Caille N, Dunham SJ, Zhao FJ (2006) Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. Environ Pollut 141:115–125

    CAS  Google Scholar 

  • Meers E, Ruttens A, Hopgood M, Lesage E, Tack FMG (2005) Potential of Brassica rapa, Cannabis sativa, Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils. Chemosphere 61:561–572

    CAS  Google Scholar 

  • Meers E, Tack FMG, Van Slycken S, Ruttens A, Vangronsveld J, Verloo MG (2008) Chemically assisted phytoextraction: a review of potential soil amendments for increasing plant uptake of heavy metals. Int J Phytorem 10:390–414

    CAS  Google Scholar 

  • Meers E, Van Slycken S, Adriaensen K, Ruttens A, Vangronsveld J, Du Laing G, Witters N, Thewys T, Tack FMG (2010) The use of bio-energy crops (Zea mays) for ‘phytoattenuation’ of heavy metals on moderately contaminated soils: a field experiment. Chemosphere 78:35–41

    CAS  Google Scholar 

  • Mench M, Bussière S, Boisson J, Castaing E, Vangronsveld J, Ruttens A, De Koe T, Bleeker P, Assunção A, Manceau A (2003) Progress in remediation and revegetation of the barren Jales gold mine spoil after in situ treatments. Plant Soil 249:187–202

    CAS  Google Scholar 

  • Mench M, Vangronsveld J, Beckx C, Ruttens A (2006a) Progress in assisted natural remediation of an arsenic contaminated agricultural soil. Environ Pollut 144:51–61

    CAS  Google Scholar 

  • Mench M, Winkel B, Baize D, Bodet JM (2006b) French bread wheat cultivars differ in grain Cd concentrations. In: Bouchardon JL, Faure O, Leclerc JC et al (eds) -Omics approaches and agriculture management: driving forces to improve food quality and safety? COST Action 859. Université Jean Monnet & Ecole Nationale Supérieure des Mines, Saint-Etienne, pp 89–90

    Google Scholar 

  • Mench M, Vangronsveld J, Lepp N, Bleeker P, Ruttens A, Geebelen W (2006c) Phytostabilisation of metal-contaminated sites. NATO Science Series: IV: Earth Environ Sci 68:109–190

    Google Scholar 

  • Mench M, Vangronsveld J, Lepp N, Ruttens A, Bleeker P, Geebelen W (2007) Use of soil amendments to attenuate trace element exposure: sustainability, side effects, and failures. In: Hamon R, McLaughlin M, Lombi E (eds) Natural attenuation of trace element availability in soils. SETAC Press, Pensacola, pp 197–228

    Google Scholar 

  • Mench M, Gasté H, Bes C (2008) Phenotypic traits of metallicolous and non-metallicolous Agrostis capillaris exposed to Cu. In: Lišková D, Lux A, Martinka M (eds) Contaminants and nutrients availability, accumulation/exclusion and plant–microbia–soil interactions, COST Action 859. Mgr. P Cibulka, Copycentrum PACI, Bratislava, p 19

    Google Scholar 

  • Mench M, Schwitzguébel JP, Schröder P, Bert V, Gawronski S, Gupta S (2009) Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification and sequestration, and consequences for food safety. Environ Sci Pollut Res 16:876–900

    CAS  Google Scholar 

  • Mendez MO, Maier RM (2008) Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environ Health Perspect 116:278–283

    Article  CAS  Google Scholar 

  • Mendez MO, Glenn EP, Maier RM (2007) Phytostabilization potential of quailbush for mine tailings: growth, metal accumulation, and microbial community changes. J Environ Qual 36:245–253

    CAS  Google Scholar 

  • Migeon A, Richaud P, Guinet F, Chalot M, Blaudez D (2009) Metal accumulation by woody species on contaminated sites in the North of France. Water Air Soil Pollut 204:89–101

    CAS  Google Scholar 

  • Monteiro MR, Ambrozin ARP, Liao LM, Ferreira AG (2008) Critical review on analytical methods for biodiesel characterization. Talanta 77:593–605

    CAS  Google Scholar 

  • Munn J, January M, Cutright TJ (2008) Greenhouse evaluation of EDTA effectiveness at enhancing Cd, Cr, and Ni uptake in Helianthus annuus and Thlaspi caerulescens. J Soils Sediments 8:116–122

    CAS  Google Scholar 

  • National Research Council (2005) Mineral tolerance of animals, 2nd edn. National Academic Press, Washington, 496 p

  • Nehnevajova E, Herzig R, Federer G, Erismann KH, Schwitzguebel JP (2005) Screening of sunflower cultivars for metal phytoextraction in a contaminated field prior to mutagenesis. Int J Phytorem 7:337–349

    CAS  Google Scholar 

  • Nehnevajova E, Herzig R, Federer G, Erismann KH, Schwitzguebel JP (2007) Chemical mutagenesis—a promising technique to increase metal concentration and extraction in sunflowers. Int J Phytorem 9:149–165

    CAS  Google Scholar 

  • Nehnevajova E, Herzig R, Bourigault C, Bangerter S, Schwitzguebel JP (2009) Stability of enhanced yield and metal uptake by sunflower mutants for improved phytoremediation. Int J Phytorem 11:329–346

    CAS  Google Scholar 

  • Neugschwandtner RW, Tlustos P, Komarek M, Szakova J (2008) Phytoextraction of Pb and Cd from a contaminated agricultural soil using different EDTA application regimes: laboratory versus field scale measures of efficiency. Geoderma 144:446–454

    CAS  Google Scholar 

  • Onwubuya K, Cundy A, Puschenreiter M, Kumpiene J, Bone B, Greaves J, Teasdale P, Mench M, Tlustos P, Mikhalovskya S, Waite S, Friesl-Hanlg W, Marschner B, Müller I (2009) Developing decision support tools for the selection of ‘gentle’ remediation approaches. Sci Total Environ 407:6132–6142

    CAS  Google Scholar 

  • Palmroth MRT, Koskinen PEP, Pichtel J, Vaajasaari K, Joutti A, Tuhkanen TA, Puhakka JA (2006) Field-scale assessment of phytotreatment of soil contaminated with weathered hydrocarbons and heavy metals. J Soils Sediments 6:128–136

    CAS  Google Scholar 

  • Panfili FR, Manceau A, Sarret G, Spadini L, Kirpichtchikova T, Bert V, Laboudigue A, Marcus MA, Ahamdach N, Libert MF (2005) The effect of phytostabilization on Zn speciation in a dredged contaminated sediment using scanning electron microscopy, X-ray fluorescence, EXAFS spectroscopy, and principal components analysis. Geochim Cosmochim Act 69:2265–2284

    CAS  Google Scholar 

  • Paredes D, Kuschk P, Stange F, Mueller RA, Koeser H (2007) Model experiments on improving nitrogen removal in laboratory scale subsurface constructed wetlands by enhancing the anaerobic ammonia oxidation. Water Sci Technol 56:145–150

    CAS  Google Scholar 

  • Pilon-Smits E, Freeman J, Van Hoewyk D, Galeas M, Quinn C, Pilon M, Terry N, LeDuc D, Banuelos G (2007) Plant selenium accumulation: genetic manipulation, phytoremediaton applications and ecological implications. In: Baltrenaite E (ed) Fate of pollutants in the plant/rhizosphere system: fundamental aspects and their significance for field applications—prospects and research needs, COST Action 859. VGTU Press Technica, Vilnius, p 48

    Google Scholar 

  • Plaza S, Tearall KL, Zhao FJ, Buchner P, McGrath SP, Hawkesford MJ (2007) Expression and functional analysis of metal transporter genes in two contrasting ecotypes of the hyperaccumulator Thlaspi calerulescens. J Exp Bot 58:1717–1728

    CAS  Google Scholar 

  • Poschenrieder C, Tolra R, Barcelo J (2006) Can metals defend plants against biotic stress? Trends Plant Sci 11:288–295

    CAS  Google Scholar 

  • Prasad MNV (2007) Prosopis juliflora (invasive phreatophyte)—rhizospheric processes are responsible for successful colonization of technogenically contaminated, polluted and perturbed ecosystems. In: Baltrenaite E (ed) Fate of pollutants in the plant/rhizosphere system: fundamental aspects and their significance for field applications—prospects and research needs, COST Action 859. VGTU Press Technica, Vilnius, pp 96–97

    Google Scholar 

  • Prasad MNV, Freitas HMD (2003) Metal hyperaccumulation in plants—biodiversity prospecting for phytoremediation technology. Electr J Biotech 6:285–321

    Google Scholar 

  • Puschenreiter M, Horak O, Friesl W, Hartl W (2005) Low-cost agricultural measures to reduce heavy metal transfer into the food chain—a review. Plant Soil Environ 51:1–11

    Google Scholar 

  • Quartacci MF, Irtelli B, Gonnelli C, Gabbrielli R, Navari-Izzo F (2009) Naturally-assisted metal phytoextraction by Brassica carinata: role of root exudates. Environ Pollut 157:2697–2703

    CAS  Google Scholar 

  • Rahman KZ, Wiessner A, Kuschk P, Mattusch J, Offelder A, Kastner M, Muller RA (2008) Redox dynamics of arsenic species in the root-near environment of Juncus effusus investigated in a macro-gradient-free rooted gravel bed reactor. Eng Life Sci 8:612–621

    CAS  Google Scholar 

  • Ranalli M, Lundholm J (2008) Biodiversity and ecosystem function in constructed ecosystems. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 3(34):1–16

    Google Scholar 

  • Rathinasabapathi B, Rangasamy M, Froeba J, Cherry RH, McAuslane HJ, Capinera JL, Srivastava M, Ma LQ (2007) Arsenic hyperaccumulation in the Chinese brake fern (Pteris vittata) deters grasshopper (Schistocerca americana) herbivory. New Phytol 175:363–369

    CAS  Google Scholar 

  • Rein A, Fernqvist MM, Mayer P, Trapp S, Bittens M, Karlson UG (2007) Degradation of PCB congeners by bacterial strains. Appl Microbiol Biotechnol 77:469–481

    CAS  Google Scholar 

  • Renella G, Landi L, Ascher J, Ceccherini MT, Pietramellara G, Mench M (2008) Long-term effects of aided phytostabilisation of trace elements on microbial biomass and activity, enzyme activities, and composition of microbial community in the Jales contaminated mine spoils. Environ Pollut 152:702–712

    CAS  Google Scholar 

  • Rosario K, Iverson SL, Henderson DA, Chartrand S, McKeon C, Glenn EP, Maier RM (2007) Bacterial community changes during plant establishment at the San Pedro River mine tailings site. J Environ Qual 36:1249–1259

    CAS  Google Scholar 

  • Rossi G, Figliolia A, Socciarelli S (2004) Zinc and copper bioaccumulation in Brassica napus at flowering and maturation. Eng Life Sci 4:271–275

    CAS  Google Scholar 

  • Ruttens A, Vangronsveld J (2006) Programme Difpolmine, diffuse pollution from mine activity, realisation. ADEME. Available at http://www.difpolmine.org/servlet/KBaseShow?m—3&cid=10169&catid=10170&sort=-1, accessed on June 17, 2009

  • Ruttens A, Mench M, Colpaert JV, Boisson J, Carleer R, Vangronsveld J (2006) Phytostabilization of a metal contaminated sandy soil. I. Influence of compost and/or inorganic metal immobilizing soil amendments on phytotoxicity and plant availability of metals. Environ Pollut 144:524–532

    CAS  Google Scholar 

  • Sas-Nowosielska A, Kucharski R, Pogrzeba M, Krzyzak J, Kuperberg JM, Japenga J (2008) Phytoremediation technologies used to reduce environmental threat posed by metal-contaminated soils: Theory and reality. In: Barnes I, Kharytonov MM (eds) Simulation and assessment of chemical processes in a multiphase environment. NATO Science for Peace and Security Series C—Environmental Security, pp 285–297

  • Scheifler R, Mench M., De Vaufleury A, Coeurdassier M, Vangronsveld J, Badot P-M (2005) Terrestrial snails as bioindicators of the efficiency of remediation treatments for arsenic-polluted soils. In McLaughlin et al (eds) Conference Proceedings ICOBTE, 8th International Conference on the Biogeochemistry of Trace Elements, CSIRO, Adelaide, April 3–7, Australia, pp 666–667

  • Scholz M, Harrington R, Carroll P, Mustafa A (2007) The integrated constructed wetlands (ICW) concept. Wetlands 27:337–354

    Google Scholar 

  • Schröder P, Navarro-Avino J, Azaizeh H, Goldhirsh AG, Di Gregorio S, Komives T, Langergraber G, Lenz A, Maestri E, Memon AR, Ranallill A, Sebastiani L, Smrcek S, Vanek T, Vuilleumier S, Wissing F (2007a) Using phytoremediation technologies to upgrade wastewater treatment in Europe. Environ Sci Pollut Res 14:490–497

    Google Scholar 

  • Schröder P, Scheer CE, Diekmann F, Stampfl A (2007b) How plants cope with foreign compounds—translocation of xenobiotic glutathione conjugates in roots of barley (Hordeum vulgare). Environ Sci Pollut Res 14:114–122

    Google Scholar 

  • Schröder P, Herzig R, Bojnov B, Ruttens A, Nehnevajova E, Stamatiadis S, Memon A, Vassilev A, Caviezel M, Vangronsveld J (2008a) Bioenergy to save the world—producing novel energy plants for growth on abandoned land. Environ Sci Pollut Res 15:196–204

    Google Scholar 

  • Schröder P, Daubner D, Maier H, Neustifter J, Debus R (2008b) Phytoremediation of organic xenobiotics—glutathione dependent detoxification in Phragmites plants from European treatment sites. Bioresour Technol 99:7183–7191

    Google Scholar 

  • Schwartz C, Echevarria G, Morel JL (2003) Phytoextraction of cadmium with Thlaspi caerulescens. Plant Soil 249:27–35

    CAS  Google Scholar 

  • Schwitzguébel JP, Aubert S, Grosse W, Laturnus F (2002) Sulphonated aromatic pollutants—limits of microbial degradability and potential of phytoremediation. Environ Sci Pollut Res 9:62–72

    Google Scholar 

  • Shelmerdine PA, Black CR, McGrath SP, Young SD (2009) Modelling phytoremediation by the hyperaccumulating fern, Pteris vittata, of soils historically contaminated with arsenic. Environ Pollut 157:1589–1705

    CAS  Google Scholar 

  • Shilev S, Naydenov M, Tahsin N, Sancho ED, Bennlloch M, Vancheva V, Sapundjieva K, Kuzmanova J (2007) Effect of easily biodegradable amendments on heavy metal solubilization and accumulation in technical crops—a field trial. J Environ Eng Landsc Manag 15:237–242

    Google Scholar 

  • Siebielec G, Stuczynski T (2007) From site characterization to field application of remediation methods for metal contaminated lands. In: Baltrenaite E (ed) Fate of pollutants in the plant/rhizosphere system: fundamental aspects and their significance for field applications—prospects and research needs, COST Action 859. VGTU Press Technica, Vilnius, pp 106–108

    Google Scholar 

  • Siebielec G, Chaney RL, Kukier U (2007) Liming to remediate Ni contaminated soils with diverse properties and a wide range of Ni concentration. Plant Soil 299:117–130

    CAS  Google Scholar 

  • Sierra MJ, Millan R, Esteban E, Cardona AI, Schmid T (2008) Evaluation of mercury uptake and distribution in Vicia sativa L. applying two different study scales: greenhouse conditions and lysimeter experiments. J Geochem Explor 96:203–209

    CAS  Google Scholar 

  • Sipila TP, Keskinen AK, Akerman ML, Fortelius C, Haahtela K, Yrjala K (2008) High aromatic ring-cleavage diversity in birch rhizosphere: PAH treatment-specific changes of IE3 group extradiol dioxygenases and 16S rRNA bacterial communities in soil. ISME J 2:968–981

    CAS  Google Scholar 

  • Sirguey C, Schwartz C, Morel JL (2006) Response of Thlaspi caerulescens to nitrogen, phosphorus and sulfur fertilisation. Int J Phytorem 8:149–161

    Google Scholar 

  • Smrcek S, Habartova-Brichnacova V, Psondrova S, Sticha M (2009) Phytoremediation and pharmaceuticals in the environment. In: Erdei L (ed) Uptake, sequestration and detoxification—an integrated approach. COST Action 859. University of Szeged, Hungary, p 70

    Google Scholar 

  • Smreczak B, Maliszewska-Kordybach B (2006) The influence of annual plants cultivation on PAH degradation in contaminated soils—as affected by the root system abundance. In: Dias S (ed) Phytotechnologies Lessons from Pilot and Field Scale, COST Action 859, Sintra, Portugal, p 31

  • Solhi M, Shareatmadari H, Hajabbasi M (2005) Lead and zinc extraction potential of two common crop plants, Helianthus annuus and Brassica napus. Water Air Soil Pollut 167:59–71

    CAS  Google Scholar 

  • Solowey E (2007) Phytoremediation of soil deficiencies in arid and saline area by nitrogen fixing arboreal legumes. In: Golan A (ed) Nutrient biofortification and exclusion of pollutants in food plants, COST Action 859, Ben-Gurion University of the Negev, Sede-Boqer Campus, Israel, p 54

  • Soudek P, Valenova P, Benesova D, Vanek T (2007) From laboratory experiments to large scale application—an example of the phytoremediation of radionuclides. NATO Science Series IV Earth Environ Sci 75:139–158

    Google Scholar 

  • Stuczynski T, Siebielec G, Daniels WL, McCarty G, Chaney RL (2007) Biological aspects of metal waste reclamation with biosolids. J Environ Qual 36:1154–1162

    CAS  Google Scholar 

  • Szalacha E, Gawrońska H, Polec-Pawlak K, Miszczak A, Przybysz A, Gawronski SW (2009) Some insights into physiological and molecular basis of Arabidopsis thaliana L. plants response to platinum. In: Erdei L (ed) Uptake, sequestration and detoxification—an integrated approach, COST Action 859. University of Szeged, Hungary, p 10

  • Tassi E, Pouget J, Petruzzelli G, Barbafieri M (2008) The effects of exogenous plant growth regulators in the phytoextraction of heavy metals. Chemosphere 71:66–73

    CAS  Google Scholar 

  • Tervahauta AI, Fortelius C, Tuomainen M, Akerman ML, Rantalainen K, Sipila T, Lehesranta SJ, Koistinen KM, Karenlampi S, Yrjala K (2009) Effect of birch (Betula spp.) and associated rhizoidal bacteria on the degradation of soil polyaromatic hydrocarbons, PAH-induced changes in birch proteome and bacterial community. Environ Pollut 157:341–346

    CAS  Google Scholar 

  • Thewys T (2008) Economic opportunities of phytoremediation. In: Bert V (ed), Phytotechnologies in practice: biomass production, agricultural methods, legacy, legal and economic aspects. COST Action 859, Verneuil-en-Halatte, France, pp 45–46

  • Thewys T, Kuppens T (2008) Economics of willow pyrolysis after phytoextraction. Int J Phytorem 10:561–583

    Google Scholar 

  • Tietz A, Kirschner A, Langergraber G, Sleytr K, Haberl R (2007) Characterisation of microbial biocoenosis in vertical subsurface flow constructed wetlands. Sci Total Environ 380:163–172

    CAS  Google Scholar 

  • Tisch B, Beckett P, Okonski A, Gordon C, Spiers G (2000) Remediation and revegetation of barren copper tailings using paper mill sludge: an overview. 25th Annual Canadian Land Reclamation Association and the 4th International Affiliation of Land Reclamationists Meetings: Global Land Reclamation/Remediation and Beyond. September 18—21, 2000, Edmonton, Alberta, pp 623–630

  • Trapp S (2007) Fruit tree model for uptake of organic compounds from soil and air. SAR QSAR Env Res 18:367–387

    CAS  Google Scholar 

  • Truu J, Heinaru E, Vedler E, Juhanson J, Viirmae M, Heinaru A (2007) Formation of microbial communities in oil shale chemical industry solid wastes during phytoremediation and bioaugmentation. NATO Science Series IV Earth Environmental Sci 76:57–66

    Google Scholar 

  • Turan M, Bringu A (2007) Phytoremediation based on canola (Brassica napus L.) and Indian mustard (Brassica juncea L.) planted on spiked soil by aliquot amount of Cd, Cu, Pb, and Zn. Plant Soil Environ 53:7–15

    CAS  Google Scholar 

  • Uhlik O, Sanda M, Dudkova V, Trbolova L, Stursa P, Macek T, Mackova M (2009) Potential of plants and plant compounds to stimulate PCB degradation activities of rhizosphere bacteria. In: Erdei L (ed) Uptake, sequestration and detoxification—an integrated approach. COST Action 859. University of Szeged, Hungary, p 33

    Google Scholar 

  • Valentine J, Duller CJ, Hinton-Jones M, Tubby I, Fry DA, Slater FM, Sherborne A, Jones E, Heaton R, Farrell J, Horne B, Green CG, Powell H (2009) The development of sustainable heat and power fuelled by biomass from short rotation coppice in Wales. Aberystwyth University Report of the Helyg i Gymru/Willow for Wales 2004–2008 project, 92 pp

  • Vamerali T, Bandiera M, Coletto L, Zanetti F, Dickinson NM, Mosca G (2009) Phytoremediation trials on metal- and arsenic-contaminated pyrite wastes (Torviscosa, Italy). Environ Pollut 157:887–894

    CAS  Google Scholar 

  • Vanek T, Gerth A, Vakrikova Z, Podlipna R, Soudek P (2007) Phytoremediation of explosives. NATO Science Series IV Earth Environmental Sci 75:209–225

    Google Scholar 

  • Vanek T, Soudek P, Petrova S, Fialova Z, Podlipna R (2009) Potential of selected plants for pharmaceuticals phytoremediation. In: Erdei L (ed) Uptake, sequestration and detoxification—an integrated approach. COST Action 859. University of Szeged, Hungary, p 71

    Google Scholar 

  • Van Ginneken L, Meers E, Guisson R, Ruttens A, Elst K, Tack FMG, Vangronsveld J, Diels L, Dejonghe W (2007) Phytoremediation for heavy metal-contaminated soils combined with bioenergy production. J Environ Eng Landsc Manag 15:227–236

    Google Scholar 

  • Vangronsveld J, Ruttens A, Mastretta C, Geebelen W, Colpaert J, Thewys T, Meers E, van der Lelie D (2006) Phytoremediation of metal contaminated soils: data from field experiments. In: Dias S (ed) Phytotechnologies lessons from pilot and field scale, COST Action 859, Sintra, Portugal, p 2

  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, van der Lelie D, Mench M (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794

    CAS  Google Scholar 

  • Van Nevel L, Mertens J, Oorts K, Verheyen K (2007) Phytoextraction of metals from soils: how far from practice? Environ Pollut 150:34–40

    Google Scholar 

  • Vazquez S, Carpena RO, Bernal MP (2008) Contribution of heavy metals and As-loaded lupin root mineralization to the availability of the pollutants in multi-contaminated soils. Environ Pollut 152:373–379

    CAS  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776

    CAS  Google Scholar 

  • Vymazal J (2009) The use of constructed wetlands with horizontal sub-surface flow for various types of wastewater. Ecol Eng 35:1–17

    Google Scholar 

  • Warren GP, Alloway BJ, Lepp NW, Singh B, Bochereau FJM, Penny C (2003) Field trials to assess the uptake of arsenic by vegetables from contaminated soils and soil remediation with iron oxides. Sci Total Environ 311:19–33

    CAS  Google Scholar 

  • Wei SH, da Silva JAT, Zhou QX (2008) Agro-improving method of phytoextracting heavy metal contaminated soil. J Haz Mat 150:662–668

    CAS  Google Scholar 

  • Wenzel WW, Unterbrunner R, Sommer P, Sacco P (2003) Chelate-assisted phytoextraction using canola (Brassica napus L.) in outdoors pot and lysimeter experiments. Plant Soil 249:83–96

    CAS  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009a) Phytoremediation: plant–endophyte partnerships take the challenge. Curr Opin Biotech 20:248–254

    CAS  Google Scholar 

  • Weyens N, van der Lelie D, Artois T, Smeets K, Taghavi S, Newman L, Carleer R, Vangronsveld J (2009b) Bioaugmentation with engineered endophytic bacteria improves phytoremediation. Environ Sci Technol 43:9413–9418

  • Witters N, van Slycken S, Ruttens A, Adriaensen K, Meers E, Meiresonne L, Tack FMG, Thewys T, Laes E, Vangronsveld J (2009) Short-rotation coppice of willow for phytoremediation of a metal-contaminated agricultural area: a sustainability assessment. BioEnergy Research 2:144–152

    Google Scholar 

  • Zehnder B (2008) Du Miscanthus sur les terres polluées de Metaleurop. L’Écho du Pas-de-Calais 97:13. Available at http://s263176304.onlinehome.fr/PDF_echo//97.pdf, accessed on August 20, 2009

  • Zelko I, Lux A, Czibula K (2008) Difference in the root structure of hyperaccumulator Thlaspi caerulescens and non-hyperaccumulator Thlaspi arvense. Int J Environ Pollut 33:123–132

    CAS  Google Scholar 

  • Zhao FJ, McGrath SP (2009) Biofortification and phytoremediation. Curr Opin Cell Biol 12:373–380

    CAS  Google Scholar 

  • Zorrig W, Sarrobert C, Rouached A, Maisonneuve B, Davidian J-C, Abdelly C, Berthomieu P (2009) Genetic and physiological determinants controlling cadmium accumulation in lettuce (Lactuca sativa). In: Erdei L (ed) Uptake, sequestration and detoxification—an integrated approach. COST Action 859. University of Szeged, Szeged, p 75

    Google Scholar 

Download references

Acknowledgements

This review was written by members of Working Group 4 (Integration and application of phytotechnologies) of COST Action 859 (Phytotechnologies to promote sustainable land use and improve food safety). COST is financed by the European Commission, with European Science Foundation as implementing agent. Authors are grateful to all COST Action 859 members for their contribution to the network (all abstracts available at http://w3.gre.ac.uk/cost859/), especially to working group coordinators and workshop organising committees, and to the COST Office, Brussels, Belgium, ADEME Department of Polluted Soils and Sites, Angers, France, and Aquitaine Region Council, Bordeaux, France for financial support. Thanks to Dr. S. Trapp, Environment & Resources DTU, Technical University of Denmark, Kongens Lyngby, DK for relevant comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Mench.

Additional information

Responsible editor: Stefan Norra

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mench, M., Lepp, N., Bert, V. et al. Successes and limitations of phytotechnologies at field scale: outcomes, assessment and outlook from COST Action 859. J Soils Sediments 10, 1039–1070 (2010). https://doi.org/10.1007/s11368-010-0190-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-010-0190-x

Keywords

Navigation