Skip to main content
Log in

Sublethal diclofenac induced oxidative stress, neurotoxicity, molecular responses and alters energy metabolism proteins in Nile tilapia, Oreochromis niloticus

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Reports have shown that residues of pharmaceuticals and their metabolites can pose toxicological threats to organisms living in aquatic ecosystem. Nile tilapia, Oreochromis niloticus, was exposed at 0.17, 0.34, and 0.68 mg L−1 of diclofenac up to 60 days in a renewal static bioassay system. Antioxidant enzymes reactions, molecular responses, activities of energy metabolism proteins, and the neurotoxic potentials of the drug in the brain and fish muscle were evaluated. Antioxidant enzyme activities such as superoxide dismutase, glutathione-S-transferase, and also fructose 1, 6 bisphosphatase and glucose-6-phosphate dehydrogenase as well as the levels of lipid peroxidation and protein carbonyl were elevated, while glutathione peroxidase, total reduced glutathione, and acetylcholinesterase in the brain and muscles of the treated groups were significantly inhibited in a dose-dependent association. Expression of superoxide dismutase (sod), catalase (cat), and heat shock proteins (hsp 70) genes in brain and muscle tissues was up-regulated. Continuous treatment with sublethal diclofenac for a long time can induce oxidative imbalance, cause neurotoxicity, and alter the expression of genes related to stress in Nile tilapia, suggesting the use of these biomarkers in monitoring the adverse effects the pharmaceuticals could cause to organisms in aquatic ecosystem for possible mitigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Aissaoui S, Sifour M, Ouled-Haddar H, Benguedouar L, Lahouel M (2017) Toxicity assessment of diclofenac and its biodegradation metabolites toward mice. Toxicol Environ Heal Sci 9(5):284–290

    Article  Google Scholar 

  • Ajima MNO, Pandey PK, Kumar K, Poojary N (2017) Neurotoxic effects, molecular responses and oxidative stress biomarkers in Nile tilapia, Oreochromis niloticus (Linnaeus, 1758) exposed to verapamil. Comp Biochem Physiol Part C: Toxicol Pharmacol 196:44–52

    CAS  Google Scholar 

  • Ajima MNO, Pandey PK, Kumar K, Poojary N (2018) Alteration in DNA structure, molecular responses and Na -K-ATPase activities in the gill of Nile tilapia, Oreochromis niloticus (Linnaeus, 1758) in response to sub-lethal verapamil. Ecotoxicol Environ Saf 147:809–816

    Article  CAS  Google Scholar 

  • Ajima MNO, Pandey PK, Kumar K, Poojary N, Gora AH (2019) Verapamil caused biochemical alteration, DNA damage and expression of hepatic stress-related gene biomarkers in Nile tilapia, Oreochromis niloticus. Comp Clin Pathol 29(1):135–144

    Article  CAS  Google Scholar 

  • Ajima MNO, Kumar K, Poojary N, Pandey PK (2021) Oxidative stress biomarkers, biochemical responses and Na+ -K+ -ATPase activities in Nile tilapia, Oreochromis niloticus exposed to diclofenac. Comp Biochem Physiol Part C: Toxicol Pharmacol 240:108934

    CAS  Google Scholar 

  • Aouacheri W, Saka S, Djafer R, Lefranc G (2009) Protective effect of diclofenac towards the oxidative stress induced by paracetamol toxicity in rats. Ann Biol Clin (Paris) 67:619–627

    CAS  Google Scholar 

  • Augustinsson KB (1957) The reaction of acetyl choline esters and other carboxylic acid derivatives with hydroxylamine and its analytical application. J Biol Chem 180:249–261

    Google Scholar 

  • Aus der Beek T, Weber FA, Bergmann A, Hickmann S, Ebert I, Hein A, Kuster A (2016) Pharmaceuticals in the environment: global occurrences and perspectives. Environ Toxicol Chem 35:823–835

    Article  CAS  Google Scholar 

  • Bainy ACD, Saito E, Carvalho PSM, Junqueira VBC (1996) Oxidative stress in gill, erythrocytes, liver and kidney of Nile tilapia (Oreochromis niloticus) from a polluted site. Aquat Toxicol 34:151–162

    Article  CAS  Google Scholar 

  • Bao S, Nie X, Ou R, Wang C, Ku P, Li K (2017) Effects of diclofenac on the expression of Nrf2 and its downstream target genes in mosquito fish (Gambusia affinis). Aquat Toxicol. https://doi.org/10.1016/j.aquatox.2017.04.008

  • Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Biagiotti E, Bosch KS, Ninfali P, Frederiks WM, Van Noorden CJF (2000) Posttranslational regulation of glucose-6-phosphate dehydrogenase activity in tongue epithelium. J Histochem Cytochem 48(7):971–977

    Article  CAS  Google Scholar 

  • Bing-Shu H, Jun W, Juan L, Xia-Min H (2017) Eco-pharmacovigilance of non-steroidal anti-inflammatory drugs: necessity and opportunities. Chemosphere 181:178–189

    Article  CAS  Google Scholar 

  • Brandao FP, Rodrigues S, Castro BB, Goncalves F, Antunes SC, Nunes B (2013) Short term effects of neuroactive pharmaceutical drugs on a fish species: biochemical and behavioural effects. Aquat Toxicol 144:218–229

    Article  CAS  Google Scholar 

  • Baravalia Y, Vaghasiya Y, Chanda S (2011) Hepatoprotective effect of Woodfordia fruticosa Kurz flowers on diclofenac sodium induced liver toxicity in rats. Asian Pac J Trop Med 4:342–346

    Article  Google Scholar 

  • Bio S, Nunes B (2020) Acute effects of diclofenac on zebrafish: indications of oxidative effects and damages at environmentally realistic levels of exposure. Environ Toxicol Pharmacol. https://doi.org/10.1016/j.etap.2020.103394

  • Bresolin de Souza K, Jutfelt F, Kling P, Forlin L, Sturve J (2014) Effects of increased CO2 on fish gill and plasma proteome. PLoS ONE 9(7):e102901. https://doi.org/10.1371/journal.pone.0102901

    Article  CAS  Google Scholar 

  • Deigweiher K, Hirse T, Bock C, Lucassen M, Portner HO (2010) Hypercapnia induced shifts in gill energy budgets of Antarctic notothenioids. J Comp Physiol B 180:347–359

    Article  CAS  Google Scholar 

  • De Moss RD (1953) Glucose -6- phosphate and glucose-6-phosphogluconic dehydrogenase from Leuconostoc mesenteroides. In: Colowick SP, Kalplan NO (eds) Methods of Enzymology. Academic press, New York, pp 328–332

    Google Scholar 

  • de Zhang L, Hu CX, Li DH, Liu YD (2013) Zebrafish locomotor capacity and brain acetylcholinesterase activity is altered by Aphanizomenon flos-aquae DC-1 aphantoxins. Aquat Toxicol 15(138–139):139–149

    Article  CAS  Google Scholar 

  • Ellman GL (1959) Tissue sulphydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  Google Scholar 

  • Feito R, Valcárcel Y, Catalá M (2012) Biomarker assessment of toxicity with miniaturised bioassays: diclofenac as a case study. Ecotoxicology 21:289–296

    Article  CAS  Google Scholar 

  • Ferrari A, Venturino A, de D'Angelo AMP (2007) Effects of carbaryl and azinphosmethyl on juvenile rainbow trout (Oncorhynchus mykiss) detoxifying enzymes. Pestic Biochem Physiol 88:134–142

    Article  CAS  Google Scholar 

  • Freeland RA, Harper AL (1959) The study of metabolic pathway by means of adaptation. J Biol Chem 234:1350–1354

    Article  Google Scholar 

  • Galati G, Tafazoli S, Sabzevari O, Chan TS, O'Brien PJ (2002) Idiosyncratic NSAID drug induced oxidative stress. Chem Biol Interact 142:25–41

    Article  CAS  Google Scholar 

  • Ghelichpour M, Mirghaed AT, Hoseinifar SH, Khalili M, Yousef M, Van Doan H, Perez-Jimenez A (2019) Expression of immune, antioxidant and stress related genes in different organs of common carp exposed to indoxacarb. Aquat Toxicol 208:208–216

    Article  CAS  Google Scholar 

  • Godoi FGA, Muñoz-Peñuela M, Gomes ADO, Tolussi CE, Brambila-Souza G, Branco GS, Lo Nostro FL, Moreira RG (2020) Endocrine disruptive action of diclofenac and caffeine on Astyanax altiparanae males (Teleostei: Characiformes: Characidae). Comp Biochem Physiol Part C: Toxicol Pharmacol 231:108720

    CAS  Google Scholar 

  • Gröner F, Höhne C, Kleiner W, Kloas W (2017) Chronic diclofenac exposure affects gill integrity and pituitary gene expression and displays estrogenic activity in Nile tilapia (Oreochromis niloticus). Chemosphere 166:473–481

    Article  CAS  Google Scholar 

  • Guiloski IC, Piancini LDS, Dagostim AC, de Morais Calado SL, Fávaro LF, Boschen SL, Cestari MM, da Cunha C, de Assis HCS (2017) Effects of environmentally relevant concentrations of the anti-inflammatory drug diclofenac in freshwater fish Rhamdia quelen. Ecotoxicol Environ Saf 139:291–300

    Article  CAS  Google Scholar 

  • Glusczak L, dos Santos MD, Crestani M, da Fonseca MB, de Araujo PF, Duarte MF, Vieira VL (2006) Effect of glyphosate herbicide on acetylcholinesterase activity and metabolic and hematological parameters in piava (Leporinus obtusidens). Ecotoxicol Environ Saf 65(2):237–241

    Article  CAS  Google Scholar 

  • Habig W, Pabst M, Jakoby W (1974) Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem 22:7130–7139

    Article  Google Scholar 

  • Hestrin S (1949) The reaction of acetyl choline esters and other carboxylic acid derivatives with hydroxyline and its analytical application. J Biol Chem 180:249–261

    Article  CAS  Google Scholar 

  • Iheanacho SC, Odo GE (2020) Dietary exposure to polyvinyl chloride microparticles induced oxidative stress and hepatic damage in Clarias gariepinus (Burchell, 1822). Environ Sci Pollut Res 27:21159–21173. https://doi.org/10.1007/s11356-020-08611-9

    Article  CAS  Google Scholar 

  • Islas-Flores H, Gómez-Oliván LM, Galar-Martínez M, Colín-Cruz A, Neri-Cruz N, García-Medina S (2013) Diclofenac-induced oxidative stress in brain, liver, gill and blood of common carp (Cyprinus carpio). Ecotoxicol Environ Saf 92:32–38

    Article  CAS  Google Scholar 

  • Jin Y, Zhang X, Shu L, Chen L, Sun L, Qian H, Liu W, Fu Z (2010) Oxidative stress response and gene expression with atrazine exposure in adult female zebra fish (Danio rerio). Chemosphere 78:846–852

    Article  CAS  Google Scholar 

  • Kim YH, Lee SH (2018) Invertebrate acetylcholinesterases: insights into their evolution and non-classical functions. J Asia Pac Entomol 21(1):186–195

    Article  Google Scholar 

  • Köhler A, Van Noorden CJF (1998) Initial velocities of G6PDH and PGDH in situ and the expression of proliferating cell nuclear antigen (PCNA) are sensitive diagnostic markers during environmental hepatocellular carcinogenesis in marine flatfish. Aquat Toxicol 40:233–252

    Article  Google Scholar 

  • Köhler A, Bahns S, Van Noorden CJF (1998) Determination of kinetic properties of G6PDH and PGDH and the expression of PCNA during liver carcinogenesis in coastal flounder. Mar. Environ Res 46:179–183

    Google Scholar 

  • Levine RL, Garland D, Oliver CN, Amici A, Lenz AG, Ahn BW, Shalteil S, Stadtman ER (1990) Determination of carbonyl content of oxidatively modified proteins. Methods Enzymol 186:464–478

    Article  CAS  Google Scholar 

  • Li ZH, Zlabek V, Velisek J, Grabic R, Machova J, Randak T (2010) Modulation of antioxidant defence system in brain of rainbow trout (Oncorhynchus mykiss) after chronic carbamazepine treatment. Comp Biochem Physiol Part C: Toxicol Pharmacol 151:137–141

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real time quantitative PCR and the 2-ΔΔCt method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Madeira C, Madeira D, Diniz MS, Cabral HN, Vinagre C (2016) Thermal acclimation in Clownfish: An integrated biomarker response and multi-tissue experimental approach. Ecol Indic 71:280–292

    Article  Google Scholar 

  • Madhusudhanan N, KavithaLakshmi SN, Shanmugasundaram KR, Shanmugasundaram ERB (2004) Oxidative damage to lipids and proteins induced by aflatoxin B-1 in fish (Labeo rohita)—protective role of Amrita Bindu. Environ Toxicol Pharmacol 17:73–77

    Article  CAS  Google Scholar 

  • Mathew S, Nair AKK, Anandan R, Gopalan P, Nair NV, Devadasan K (2007) Biochemical studies on changes associated with enzymes of glucose metabolism in white spot syndrome virus (WSSV) infected with Penaeus monodon (Fabricius). Afr J Biotechnol 6(16):1944–1948

    Article  CAS  Google Scholar 

  • Maulvault AL, Barbosa V, Alves R, Anacleto P, Camacho C, Cunha S, Fernandes JO, Ferreira PP, Rosa R, Marques A, Diniz M (2018) Integrated multi-biomarker responses of juvenile seabass to diclofenac, warming and acidification co-exposure. Aquat Toxicol 202:65–79

    Article  CAS  Google Scholar 

  • McRae NK, Glover CN, Burket SR, Brooks BW, Gaw S (2018) Acute exposure to an environmentally relevant concentration of diclofenac elicits oxidative stress in the culturally important galaxiid fish Galaxias maculatus. Environ Toxicol Chem 37(1):224–235

    Article  CAS  Google Scholar 

  • Misra HP, Fridovich L (1972) The role of superoxide anion in the autooxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    Article  CAS  Google Scholar 

  • Muñoz-Peñuela M, Lo Nostro FL, Gomes AD, Tolussi CE, Branco GS, Pinheiro JPS, de Godoi FGA, Moreira RG (2021) Diclofenac and caffeine inhibit hepatic antioxidant enzymes in the freshwater fish Astyanax altiparanae (Teleostei: Characiformes). Comp Biochem Physiol, Part C 240:108910

    Google Scholar 

  • Ogueji E, Nwani CD, Mbah C, Iheanacho SC, Nweke F (2019) Oxidative stress, biochemical, lipid peroxidation, and antioxidant responses in Clarias gariepinus exposed to acute concentrations of ivermectin. Environ Sci Pollut Res 27:16806–16815. https://doi.org/10.1007/s11356-019-07035-4

    Article  CAS  Google Scholar 

  • Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169

    CAS  Google Scholar 

  • Pandey PK, Ajima MNO, Kumar K, Poojary N, Kumar S (2017) Evaluation of DNA damage and physiological responses in Nile tilapia, Oreochromis niloticus (Linnaeus, 1758) exposed to sub-lethal diclofenac (DCF). Aquat Toxicol 186:205–214

    Article  CAS  Google Scholar 

  • Rajeshkumar S, Mini J, Munuswamy N (2013) Effects of heavy metals on antioxidants and expression of HSP70 in different tissues of Milk fish (Chanos chanos) of Kaattuppalli Island, Chennai, India. Ecotoxicol Environ Saf 98:8–18

    Article  CAS  Google Scholar 

  • Sathishkumar P, Meena RAA, Palanisami T, Ashokkumar V, Palvannan T, Gu FL (2020) Occurrence, interactive effects and ecological risk of diclofenac in environmental compartments and biota - a review. Sci Total Environ 698:134057

    Article  CAS  Google Scholar 

  • Saucedo-Vence K, Dublán-García O, López-Martínez LX, Morachis-Valdes G, Galar Martínez M, Islas-Flores H, Gómez-Oliván LM (2015) Short and long-term exposure to diclofenac alters oxidative stress status in common carp Cyprinus carpio. Ecotoxicology. 24:527–539

    Article  CAS  Google Scholar 

  • Scheiman JM, Hindley CE (2010) Strategies to optimize treatment with NSAIDs in patients at risk for gastrointestinal and cardiovascular adverse events. Clin Therapeut 32:667–677

    Article  CAS  Google Scholar 

  • Serafini S, Souza CE, Baldissera BD, Baldisserotto B, Segat JC, Baretta D, Zanella R, da Silva AS (2019) Fish exposed to water contaminated with eprinomectin show inhibition of the activities of AChE and Na+ -K+ -ATPase in the brain, and changes in natural behaviour. Chemosphere 223:124–130

    Article  CAS  Google Scholar 

  • Sharma SK, Krishna-Murti CR (1968) Production of lipid peroxides by brain. J Neurochem 15:147–149

    Article  CAS  Google Scholar 

  • Shin SJ, Noh CK, Lim SG, Lee KM, Lee KJ (2017) Non-steroidal anti-inflammatory drug-induced enteropathy. Internet Res 15:446–455

    Google Scholar 

  • Slaninova A, Smutna M, Modra H, Svobodova Z (2009) A review: oxidative stress in fish induced by pesticides. Neuroendocrinol Lett 30:2–12

    CAS  Google Scholar 

  • Spolarics Z (1998) Endotexemia, pentose cycle, and the oxidant/antioxidant balance in the hepatic sinusoid. J Leukoc Biol 63:534–541

    Article  CAS  Google Scholar 

  • Srikanth K, Pereira E, Duarte A, Ahmad I (2013) Glutathione and its dependent enzymes modulatory responses to toxic metals and metalloids in fish: a review. Environ Sci Pollut Res Int 20:2133–2149

    Article  CAS  Google Scholar 

  • Stancova V, Plhalova L, Blahova J, Zivna D, Bartoskova M, Siroka Z, Marsalek P, Svobodova Z (2017) Effects of the pharmaceutical contaminants ibuprofen, diclofenac, and carbamazepine alone, and in combination, on oxidative stress parameters in early life stages of tench (Tinca tinca). Vet Med 62:90–97

    Article  CAS  Google Scholar 

  • Stepanova S, Praskova E, Chromcova L, Plhalova L, Prokes M, Blahova J, Svobodova Z (2013) The effects of diclofenac on early life stages of common carp (Cyprinus carpio). Environ Toxicol Pharmacol 35:454–460

    Article  CAS  Google Scholar 

  • Takahara S, Hamilton HB, Neel JV, Kobara TY, Ogura Y, Nishimura ET (1960) Hypocatalasemia, a new genetic carrier state. J Clin Invest 39:610–619

    Article  CAS  Google Scholar 

  • Tieppo-Francio V, Davani S, Towery C, Brown TL (2017) Oral versus topical diclofenac sodium in the treatment of osteoarthritis. J Pain Palliat Care Pharmacother 31:113–120

    Article  Google Scholar 

  • Trombini C, Hampel M, Blasco J (2019) Assessing the effect of human pharmaceuticals (carbamazepine, diclofenac and ibuprofen) on the marine clam Ruditapes philippinarum: an integrative and multibiomarker approach. Aquat Toxicol 208:146–156

    Article  CAS  Google Scholar 

  • Tseng YC, Hwang PP (2008) Some insights into energy metabolism for osmoregulation in fish. Comp Biochem Physiol C 148:419–429

    Google Scholar 

  • Van Noorden CJF, Frederiks WM (1992) Enzyme histochemistry. A laboratory manual of current methods. Royal Microsopial Handbooks 26, Oxford Science Publications, Oxford, 116 pp

  • Vojoudi S, Saber M, Gharekhani G, Esfandiari E (2017) Toxicity and sublethal effects of hexaflumuron and indoxacarb on the biological and biochemical parameters of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in Iran. Crop Prot 91:101–107

    Article  CAS  Google Scholar 

  • Wided K, Hassiba R, Mesbah L (2014) Polyphenolic fraction of Algerian propolis reverses doxorubicin induced oxidative stress in liver cells and mitochondria. Pak J Pharm Sci 2:1891–1897

    Google Scholar 

  • Xing H, Wu H, Sun G, Zhang Z, Xu S, Li S (2013) Alterations in activity and mRNA expression of acetylcholinesterase in the liver, kidney and gill of common carp exposed to atrazine and chlorpyrifos. Environ Toxicol Pharmacol 35(1):47–54

    Article  CAS  Google Scholar 

  • Yokota H, Taguchi Y, Tanaka Y, Uchiyama M, Kondo M, Tsuruda Y, Suzuki T, Eguchi S (2018) Chronic exposure to diclofenac induces delayed mandibular defects in medaka (Oryzias latipes) in a sex-dependent manner. Chemosphere 210:139–146

    Article  CAS  Google Scholar 

  • Zhang X, Yang F, Zhang X, Xu Y, Liao T, Song S, Wang H (2008) Induction of hepatic enzymes and oxidative stress in Chinese rare minnow (Gobiocypris rarus) exposed to waterborne hexabromocyclododecane (HBCDD). Aquat Toxicol 86:4–11

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The first author thanks the Indian-African fellowship programme for making available the funding and finance used in the study. The authors are very grateful to the Director, Central Institute of Fisheries Education, Mumbai, India, for supplying the apparatus and other resources, adopted for the investigation.

Availability of data and materials

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

MNOA designed, set up the experiment, analysed and interpreted the molecular responses of the fish to the drug, and was a major contributor in drafting the paper. KK analysed and interpreted the antioxidant enzymes. NP analysed energy metabolism proteins. PKP did data analysis and redrafting of the manuscript. All authors read and endorsed the latest version of the manuscript.

Corresponding author

Correspondence to Malachy N. O. Ajima.

Ethics declarations

Ethics approval

The experiment is in accordance with the care and animal wellbeing legislation of India. The research was authorized by the Board of Studies of Fish of the Central Institute of Fisheries Education (Deemed University), Mumbai, India. The welfare as well as care of fish adopted in this research was in agreement with the recommendation of the Committee for the Purpose of Regulation and Monitoring of Research on Animals, Govt. of India. This paper has no investigation based on human parts.

Consent for publication

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Bruno Nunes

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajima, M.N.O., Kumar, K., Poojary, N. et al. Sublethal diclofenac induced oxidative stress, neurotoxicity, molecular responses and alters energy metabolism proteins in Nile tilapia, Oreochromis niloticus. Environ Sci Pollut Res 28, 44494–44504 (2021). https://doi.org/10.1007/s11356-021-13899-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-13899-2

Keywords

Navigation