Skip to main content
Log in

Comparative analysis of the gut microbiota of grass carp fed with chicken faeces

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The gut microbiota is closely related to health and disease. Grass carp (Ctenopharyngodon idella) is an important food fish in China. We aimed to investigate the effect of a chicken faeces diet on the gut microbiota composition of grass carp reared in an integrated farming system in China. Gut microbiota compositions of grass carps fed chicken faeces, a commercial diet, and grass were compared based on 16S rRNA gene sequencing. The major intestinal phyla in grass carps fed chicken faeces were Firmicutes, Proteobacteria, and Actinobacteria. The untreated chicken faeces diet altered the gut microbiota composition and increased the number of potential pathogens and antibiotic-resistant bacteria in the gut to varying degrees. To reduce the risk of diseases, it is necessary to remove residual antibiotics and antibiotic-resistant bacteria in chicken faeces by fermentation or other techniques, before it can be used as a fish feed for grass carp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Awasthi MK, Chen H, Duan Y, Liu T, Awasthi SK, Wang Q, Pandey A, Zhang Z (2019) An assessment of the persistence of pathogenic bacteria removal in chicken manure compost employing clay as additive via meta-genomic analysis. J Hazard Mater 366:184–191

    Article  Google Scholar 

  • Byard RW, Moore L, Bourne AJ, Lawrence AJ, Goldwater PN (2010) Clostridium botulinum and sudden infant death syndrome: a 10-year prospective study. J Paediatr Child Health 28:156–157

    Article  Google Scholar 

  • Carlson K, Yang S (2003) Evolution of antibiotic occurrence in a river through pristine, urban and agricultural landscapes. Water Res 37:4645–4656

    Article  Google Scholar 

  • Chen Z, Jiang X (2014) Microbiological safety of chicken litter or chicken litter-based organic fertilizers: a review. Agriculture 4:1–29

    Article  Google Scholar 

  • Desai AR, Links MG, Collins SA, Mansfield GS, Drew MD, Kessel AGV, Hill JE (2012) Effects of plant-based diets on the distal gut microbiome of rainbow trout (Oncorhynchus mykiss). Aquaculture 350-353:134–142

    Article  CAS  Google Scholar 

  • Duan D-X, Shu-Yun L, Jing-Sheng S, Guo-Si Z, and Gui-Ping Z (1998) Fish farming integrated with livestock and poultry in China. Integr Fish Farm 73–82

  • Goldman E (2004) Antibiotic abuse in animal agriculture: exacerbating drug resistance in human pathogens. Hum Ecol Risk Assess 10:121–134

    Article  Google Scholar 

  • Guerrero Iii RD, Guerrero L, Alamar M (1988) Polyculture of Nile tilapia, grass carp and common carp in freshwater ponds. Trans Nat Acad Sci Tech (Phils) 10:365–368

    Google Scholar 

  • Guinane CM, Cotter PD (2013) Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Ther Adv Gastroenterol 6:295–308

    Article  Google Scholar 

  • Hale CN, Wilkie JP (1972) A comparative study of Pseudomonas species pathogenic to sorghum. N Z J Agric Res 15:448–456

    Article  Google Scholar 

  • Han S, Liu Y, Zhou Z, He S, Cao Y, Shi P, Yao B, Ring E (2010) Analysis of bacterial diversity in the intestine of grass carp (Ctenopharyngodon idellus) based on 16S rDNA gene sequences. Aquac Res 42:47–56

    Article  CAS  Google Scholar 

  • Huang H, Shi P, Wang Y, Luo H, Shao N, Wang G, Yang P, Yao B (2009) Diversity of beta-propeller phytase genes in the intestinal contents of grass carp provides insight into the release of major phosphorus from phytate in nature. Appl Environ Microbiol 75:1508–1516

    Article  CAS  Google Scholar 

  • Icaza-Chávez ME (2013) Gut microbiota in health and disease. Rev Gastroenterol Mex 78:240–248

    Google Scholar 

  • Jorgensen JH, Hindler JF, Reller LB, Weinstein MP (2007) New consensus guidelines from the Clinical and Laboratory Standards Institute for antimicrobial susceptibility testing of infrequently isolated or fastidious bacteria. Clin Infect Dis 44:280–286

    Article  Google Scholar 

  • Levine UY, Stanton T (2015) Poultry intestinal microbiota: animal health and food safety perspectives. In: Highlander SK, Rodriguez-Valera F, White B (eds) Encyclopedia of Metagenomics. Springer, Boston, MA, pp 1–8

    Google Scholar 

  • Li J, Ni J, Li J, Wang C, Li X, Wu S, Zhang T, Yu Y, Yan Q (2014) Comparative study on gastrointestinal microbiota of eight fish species with different feeding habits. J Appl Microbiol 117:1750–1760

    Article  CAS  Google Scholar 

  • Li T, Long M, Gatesoupe FJ, Zhang Q, Li A, Gong X (2015) Comparative analysis of the intestinal bacterial communities in different species of carp by pyrosequencing. Microb Ecol 69:25–36

    Article  CAS  Google Scholar 

  • Mitzner L (1978) Evaluation of biological control of nuisance aquatic vegetation by grass carp. Trans Am Fish Soc 107:135–145

    Article  Google Scholar 

  • Ni J, Yu Y, Zhang T, Gao L, Ni J, Yu Y, Zhang T, Gao L (2012) Comparison of intestinal bacterial communities in grass carp, Ctenopharyngodon idellus, from two different habitats. Chin J Oceanol Limnol 30:757–765

    Article  Google Scholar 

  • Ni J, Yan Q, Yu Y, Zhang T (2014) Factors influencing the grass carp gut microbiome and its effect on metabolism. FEMS Microbiol Ecol 87:704–714

    Article  CAS  Google Scholar 

  • Nicholson FA, Chambers BJ, Smith KA (1996) Nutrient composition of poultry faeces in England and Wales. Bioresour Technol 58:279–284

    Article  CAS  Google Scholar 

  • Ouyang WY, Huang FY, Zhao Y, Li H, Su JQ (2015) Increased levels of antibiotic resistance in urban stream of Jiulongjiang River, China. Appl Microbiol Biotechnol 99:5697–5707

    Article  CAS  Google Scholar 

  • Pond MJ, Stone DM, Alderman DJ (2006) Comparison of conventional and molecular techniques to investigate the intestinal microflora of rainbow trout (Oncorhynchus mykiss). Aquaculture 261:194–203

    Article  CAS  Google Scholar 

  • Russo P, Iturria I, Mohedano ML, Caggiaaniello G, Rainieri S, Fiocco D, Pardo MA, Lopez P, Spano G (2015) Zebrafish gut colonization by mCherry-labelled lactic acid bacteria. Appl Microbiol Biotechnol 99:3479–3490

    Article  CAS  Google Scholar 

  • Sahoo U, Singh S (2015) Integrated fish-pig and fish-poultry farming in East Kalcho, Saiha District of Mizoram, North-East India: an economic analysis. Inte J Agric For 5:281–286

    Google Scholar 

  • Sanz Y, De Palma G (2009) Gut microbiota and probiotics in modulation of epithelium and gut-associated lymphoid tissue function. Int Rev Immunol 28:397–413

    Article  CAS  Google Scholar 

  • Schloss PD, Westcott SL, Thomas R, Hall JR, Martin H, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  Google Scholar 

  • Schloss PD, Gevers D, and Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PloS One 6

  • Sekirov I, Russell SL, Antunes LCM, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90:859–904

    Article  CAS  Google Scholar 

  • Tran NT, Wang GT, Wu SG (2017) A review of intestinal microbes in grass carp Ctenopharyngodon idellus (Valenciennes). Aquac Res 48:3287–3297

    Article  Google Scholar 

  • Tran NT, Zhang J, Xiong F, Wang G-T, Li W-X, Wu S-G (2018) Altered gut microbiota associated with intestinal disease in grass carp (Ctenopharyngodon idellus). World J Microbio Biotech 34:71

    Article  Google Scholar 

  • Wang X (2013) Analysis on nutrient contents of chicken faeces and its utilization and development. Hubei Agric Sci 52:5314–5316

    Google Scholar 

  • Wang AR, Ran C, Ring E, Zhou ZG (2018) Progress in fish gastrointestinal microbiota research. Rev Aquac 10:626–640

    Article  Google Scholar 

  • Wu S, Wang G, Angert ER, Wang W, Li W, Zou H, Wu S, Wang G, Angert ER, Wang W (2012) Composition, diversity, and origin of the bacterial community in grass carp intestine. PLoS One 7:e30440

    Article  CAS  Google Scholar 

  • Wu S, Gao T, Zheng Y, Wang W, Cheng Y, Wang G (2016) Microbial diversity of intestinal contents and mucus in yellow catfish (Pelteobagrus fulvidraco). Aquaculture 303:1–7

    Article  Google Scholar 

  • Yang Q, Ren S, Niu T, Guo Y, Qi S, Han X, Liu D, Pan F (2014) Distribution of antibiotic-resistant bacteria in chicken faeces and faeces-fertilized vegetables. Environ Sci Pollut Res Int 21:1231–1241

    Article  CAS  Google Scholar 

  • Yang Q, Wang R, Ren S, Szoboszlay M, Moe LA (2016) Practical survey on antibiotic-resistant bacterial communities in livestock faeces and faeces-amended soil. J Environ Sci Health B 51:14–23

    Article  CAS  Google Scholar 

  • Yang Q, Tian T, Niu T, Wang P (2017) Molecular characterization of antibiotic resistance in cultivable multidrug-resistant bacteria from livestock manure. Environ Pollut 229:188–198

    Article  CAS  Google Scholar 

  • Ye L, Amberg J, Chapman D, Gaikowski M, Liu WT (2014) Fish gut microbiota analysis differentiates physiology and behavior of invasive Asian carp and indigenous American fish. ISME J 8:541–551

    Article  CAS  Google Scholar 

  • Zarkasi KZ, Abell GC, Taylor RS, Neuman C, Hatje E, Tamplin ML, Katouli M, Bowman JP (2014) Pyrosequencing-based characterization of gastrointestinal bacteria of Atlantic salmon (Salmo salar L.) within a commercial mariculture system. J Appl Microbiol 117:18–27

    Article  CAS  Google Scholar 

  • Zhang X (2018) China fishery statistical yearbook. China Agriculture Press, Beijing

    Google Scholar 

  • Zhang QL, Yan Y, Shen JY, Hao GJ, Shi CY, Wang QT, Liu H, Huang J (2013) Development of a reverse transcription loop-mediated isothermal amplification assay for rapid detection of grass carp reovirus. J Virol Methods 187:384–389

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Scientific Research Foundation for Talent Introduction of Southwest Medical University (0903-00040071) and Science Fund Project of Southwest Medical University (0903-00031532).

Author information

Authors and Affiliations

Authors

Contributions

XG, CZ, and LL designed the experiments. KF, YG, XG conducted the experiments. XG and QW wrote the manuscript.

Corresponding authors

Correspondence to Qin Wang or Xiaowei Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

No protected species were involved in this study, and thus, this study did not require specific permissions. The Southwest Medical University Ethics Committee reviewed and approved this study.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 732 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ke, F., Gao, Y., Liu, L. et al. Comparative analysis of the gut microbiota of grass carp fed with chicken faeces. Environ Sci Pollut Res 27, 32888–32898 (2020). https://doi.org/10.1007/s11356-020-09012-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-09012-8

Keywords

Navigation