Skip to main content
Log in

Biological synthesis of iron nanoparticles using hydrolysates from a waste-based biorefinery

  • Advances in Environmental Biotechnology and Engineering 2018
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The purpose of this work was to produce iron nanoparticles (Fe-NP) by microbial pathway from anaerobic bacteria grown in anaerobic fluidized bed reactors (AnFBRs) that constitute a new stage of a waste-based biorefinery. Bioparticles from biological fluidized bed reactors from a biorefinery of organic fraction of municipal solid wastes (that produces hydrolysates rich in reducing sugars) were nanodecorated (embedded nanobioparticle or nanodecorated bioparticle, ENBP) by biological reduction of iron salts. Factors “origin of bioparticles” (either from hydrogenogenic or methanogenic fluidized bed reactor) and “type of iron precursor salt” (iron chloride or iron citrate) were explored. SEM and high-resolution transmission electron microscopy (HRTEM) showed amorphous distribution of nanoparticles (NP) on the bioparticles surface, although small structures that are nanoparticle-like could be seen in the SEM micrographs. Some agglomeration of NPs was confirmed by DLS. Average NP size was lower in general for NP in ENBP-M than ENBP-H according to HRTEM. The factors did not have a significant influence on the specific surface area of NPs, which was high and in the range 490 to 650 m2 g−1. Analysis by EDS displayed consistent iron concentration 60–65% iron in nanoparticles present in ENBP-M (bioparticles previously grown in methanogenic bioreactor), whereas the iron concentration in NPs present in ENBP-H (bioparticles previously grown in hydrogenogenic bioreactor) was more variable in a range from 8.5 to 62%, depending on the iron salt. X-ray diffraction patterns showed the typical peaks for magnetite at 35° (3 1 1), 43° (4 0 0), and 62° (4 0 0); moreover, siderite diffraction pattern was found at 26° (0 1 2), 38° (1 1 0), and 42° (1 1 3). Results of infrared analysis of ENBP in our work were congruent with presence of magnetite and occasionally siderite determined by XRD analysis as well as presence of both Fe+2 and F+3 (and selected satellite signal peaks) observed by XPS. Our results on the ENBPs hold promise for water treatment, since iron NPs are commonly used in wastewater technologies that treat a wide variety of pollutants. Finally, the biological production of ENBP coupled to a biorefinery could become an environmentally friendly platform for nanomaterial biosynthesis as well as an additional source of revenues for a waste-based biorefinery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AnFBR:

Anaerobic fluidized bed reactor

AnFBR-H:

Anaerobic fluidized bed reactor producing biological hydrogen

AnFBR-M:

Anaerobic fluidized bed reactor producing methane

BE:

Binding energy

BET:

Brunauer-Emmett-Teller, surface adsorption method

BP:

Bioparticle

COD:

Chemical oxygen demand

CODi :

Chemical oxygen demand at the start of biosynthesis process

CODf :

Chemical oxygen demand at the end of biosynthesis process

2,4-D:

2,4-Dichlorophenoxy-acetic acid

db:

Dry basis

DCA:

Dichloroethane

DLS:

Dynamic light scattering

EDS:

Energy-dispersive spectroscopy

ENBP:

Embedded nanobioparticle or nanodecorated bioparticle

ENBP-H:

Embedded nanobioparticle from hydrogenogenic AnFBR-H

ENBP-M:

Embedded nanobioparticle from methanogenic AnFBR-M

FWHM:

Full width at half maximum of a peak in a given spectrum

GAC:

Granular activated carbon

H:

Source of ENBPs, i.e., from an AnFBR worked on dark fermentation regime

HRTEM:

High-resolution transmission electron microscopy

HSP :

Heat shock pretreatment

IR:

Infrared spectroscopy

M:

Source of ENBPs, i.e., from an AnFBR worked on methanogenic regime

MRI:

Seeding or inoculating methanogenic reactor

NP:

Nanoparticle

nZVI:

Nanozero valent iron

OFMSW:

Organic fraction of municipal solid wastes

PAC:

Powdered activated carbon

PCE:

Perchloroethylene

RI:

Relative intensity

SAED:

Selected area electron diffraction

SEM:

Scanning electron microscopy

TCA:

Trichloroethane

TCE:

Trichloroethylene

VFA:

Volatile fatty acids

VSS:

Volatile suspended solids

wb:

Wet basis

XPS:

X-ray photoelectron spectroscopy

XRD:

X-ray diffraction

ρ :

Ratio of total volatile fatty acids (COD basis)-to-solvents (COD basis)

2θ :

Angle between transmitted X-ray beam and reflected beam

η COD :

Efficiency of organic matter removal in terms of chemical oxygen demand

References

  • Albergaria JT, Alvim-Ferraz MCM, Delerue-Matos MCF (2010) Estimation of pollutant partition in sandy soils with different water contents. Environ Monit Assess 171:171–180

    CAS  Google Scholar 

  • Andreevskaya M, Johansson P, Jääskeläinen E, Rämö T, Ritari J, Paulin L, Björkroth J, Auvinen P (2016) Lactobacillus oligofermentans glucose, ribose and xylose transcriptomes show higher similarity between glucose and xylose catabolism-induced responses in the early exponential growth phase. BMC Genomics 17:539

    Google Scholar 

  • Anyika C, Asri NAM, Majid ZA, Yahya A, Jaafar J (2017) Synthesis and characterization of magnetic activated carbon developed from palm kernel shells. Nanotechnol Environ Eng 2:16–41

    Google Scholar 

  • APHA-AWWA-WPCF (1985) Standard methods for the examination of water and wastewater, 17th edn. American public health association, Washington DC

    Google Scholar 

  • Bharde A, Rautaray D, Bansal V, Ahmad A, Sarkar I, Yusuf SM, Sanyal M, Sastry M (2006) Extracellular biosynthesis of magnetite using fungi. Small 2:135–141

  • Bretón-Deval LM, Poggi-Varaldo HM (2017) Chapter 12.2 Sustainable iron based bionano-bioparticles from a dehalogenating microbial consortium allows remediation of water polluted with PCE. In: Candal R, Curutchet G, Domínguez-Montero L, Macarie H, Poggi-Varaldo HM, Sastre I, Vázquez S (eds) Environmental Biotechnology and Engineering ISEBE Advances 2016 ISBN 978-607-9023-51-5. Publisher Cinvestav Mexico City, Mexico, pp 1007–1014

    Google Scholar 

  • Bretón-Deval LM, Rossetti S, Ríos-Leal E, Matturro B, Poggi-Varaldo HM (2016) Effect of coupling zero-valent iron side filters on the performance of bioreactors fed with a high concentration of perchloroethylene. J Environ Eng:142. https://doi.org/10.1061/(ASCE)EE.1943-78700001093

  • Bretón-Deval L, Solorza-Feria O, Ríos-Leal E, Poggi-Varaldo HM (2013) Dechlorination of PCE with nanoscale particles of zero-valent iron and palladium. C-41. In: Sirabian RR and Darlington R (Chairs), Bioremediation and sustainable environmental technologies—2013. Second International Symposium on Bioremediation and Sustainable Environmental Technologies (Jacksonville, FL; June 10–13, 2013). ISBN 978-0-9819730-7-4, Battelle Memorial Institute, Columbus, OH. www.battelle.org/biosymp

  • Byrne JM, Muhamadali H, Coker VS, Cooper J, Lloyd JR (2015) Scale-up of the production of highly reactive biogenic magnetite nanoparticles using Geobacter sulfurreducens. JR Soc Interfaces 107. https://doi.org/10.1098/rsif.2015.0240

  • Chen SS, Huang YC, Lin JY, Lin MH (2014) Dechlorination of tetrachloroethylene in water using stabilized nanoscale iron and palladized iron particles. Desalin Water Treat 52:702–711

    CAS  Google Scholar 

  • Chieffi G, Giordano C, Antonietti M, Esposito D (2014) FeNi nanoparticles with carbon armor as sustainable hydrogenation catalysts: towards biorefineries. J Mater Chem A 2:11591–11596

    CAS  Google Scholar 

  • Choi K, Lee N, Lee W (2014) Reductive dechlorination of tetrachloroethylene by bimetallic catalysts on hematite in the presence of hydrogen gas. Adv Environ Res 2:151–162

    Google Scholar 

  • Chojnacka A, Blaszczyk MK, Szczesny P, Nowak K, Suminska M, Tomczyk-Zak K, Zielenkiewicz U, Sikora A (2011) Comparative analysis of hydrogen-producing bacterial biofilms and granular sludge formed in continuous cultures of fermentative bacteria. Bioresour Technol 102:10057–10064

    CAS  Google Scholar 

  • Corr SA, Byrne SJ, Tekoriute R, Meledandri CJ, Broughman DF, Lynch M, Kerskens C, O’Dwyer L, Gun’ko YK (2008) Linear assemblies of magnetic nanoparticles as MRI contrast agents. J Am Chem Soc 130:4214–4215

    CAS  Google Scholar 

  • Corrales LC, Antolinez-Romero DM, Bohórquez-Macías JA, Corredor-Vargas AM (2015) Anaerobic bacteria: processes they perform and their contribution to life sustainability on the planet. NOVA 13(23):55–81

    Google Scholar 

  • Escamilla-Alvarado C, Ríos-Leal E, Ponce-Noyola MT, Poggi-Varaldo HM (2012) Gas biofuels from solid substrate hydrogenogenic–methanogenic fermentation of the organic fraction of municipal solid waste. Process Biochem 47:1572–1587

    CAS  Google Scholar 

  • Escamilla-Alvarado C, Ponce-Noyola T, Ríos-Leal E, Poggi-Varaldo HM (2013) A multivariable evaluation of biohydrogen production by solid substrate fermentation of organic municipal solid wastes in semi-continuous batch operation. Int J Hydrogen Energ 38:I2527–I2538

    Google Scholar 

  • Escamilla-Alvarado C, Poggi-Varaldo HM, Ponce-Noyola MT (2017) Bioenergy and bioproducts from municipal organic waste as alternative to landfilling: a comparative life cycle assessment with prospective application to Mexico. Environ Sci Pollut Res 24:25602–25617

    Google Scholar 

  • Estrada-Vázquez C, Macarie H, Kato MT, Rodríguez-Vázquez R, Esparza-García F, Poggi-Varaldo HM (2003) The effect of the supplementation with a primary carbon source on the resistance to oxygen exposure of methanogenic sludge. Water Sci Technol 48(6):119–124

    Google Scholar 

  • Fredrickson JK, Zachara JM, Kennedy DW, Dong H, Onstott TC, Hinman NW, Li SM (1998) Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium. Geochim Cosmochim Ac 62:3239–3257

    CAS  Google Scholar 

  • Fujii T, De Groot FMF, Sawatzky GA, Voogt FC, Hibma T, Okada K (1999) In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy. Phys Rev B 59(4):3195–3202

    CAS  Google Scholar 

  • Gaspard S, Vazquez F, Holliger C (1998) Localization and solubilization of the Iron (III) reductase of Geobacter sulfurreducens. Appl Environ Microbiol 64:3188–3194

    CAS  Google Scholar 

  • Ghanavati H, Nahvi I, Karimi K (2015) Organic fraction of municipal solid waste as suitable feedstock for the production of lipid by oleaginous yeast Cryptococcus aerius. Waste Manag https://doi.org/10.1016/j.wasman.2014.12.007

  • Garibay-Orijel C, Ríos-Leal E, García-Mena J, Poggi-Varaldo HM (2005) 2,4,6-Trichlorophenol and phenol removal in methanogenic and partially aerated methanogenic conditions in a fluidized bed bioreactor. J Chem Technol Biotechnol 80:1180–1187. https://doi.org/10.1002/jctb.1313

    Article  CAS  Google Scholar 

  • Ghimire A, Frunzo L, Pirozzi F, Trably E, Escudie R, Lens PNL, Esposito G (2015) A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products. Appl Energ 144:73–95

    CAS  Google Scholar 

  • Graham HD (1992) Stabilization of the Prussian blue color in the determination of polyphenols. J Agric Food Chem 40:801–805

    CAS  Google Scholar 

  • Guo H, Barnard AS (2013) Naturally occurring iron oxide nanoparticles: morphology, surface chemistry and environmental stability. J Mater Chem A 1:27–42

    CAS  Google Scholar 

  • Habouzit F, Hamelin J, Santa-Catalina G, Steyer JP, Bernet N (2014) Biofilm development during the start-up period of anaerobic biofilm reactors: the biofilm Archaea community is highly dependent on the support material. Microb Biotechnol 7:257–264

    CAS  Google Scholar 

  • Hennebel T, Verhagen P, Simoen H, De Gusseme B, Vlaeminck SE, Boon N, Verstraete W (2009) Remediation of trichloroethylene by bio-precipitated and encapsulated palladium nanoparticles in a fixed bed reactor. Chemosphere 76:1221–1225

    CAS  Google Scholar 

  • Hernández-Correa E, Poggi-Varaldo HM, Ponce-Noyola MT, Solorza-Feria O, Romero-Cedillo L, Ríos-Leal E, Hernández-Flores G (2017) Powdered eggshell waste: adsorbent of inhibitors in hydrolysate of OFMSW. Segundo Congreso Internacional de Energía 2017. CDMX, México. 04-08 September 2017. Paper 119, pp. 1–6

  • Honary S, Barabadi H, Ebrahimi P, Naghibi F, Alizadeh A (2015) Development and optimization of biometal nanoparticles by using mathematical methodology: a microbial approach. J Nanopart Res 30:106–115. https://doi.org/10.4028/www.scientific.net/JNanoR.30.106

    Article  CAS  Google Scholar 

  • Hung CH, Lee KS, Cheng LH, Huang YH, Lin PJ, Chang JS (2007) Quantitative analysis of a high-rate hydrogen-producing microbial community in anaerobic agitated granular sludge bed bioreactors using glucose as substrate. Appl Microbiol Biotechnol 75:693–701

    CAS  Google Scholar 

  • Jaafarzadeh N, Ghanbari F, Ahmadi M (2017) Catalytic degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) by nano-Fe2O3 activated peroxymonosulfate: influential factors and mechanism determination. Chemosphere 169:568–576

    CAS  Google Scholar 

  • Jacob JJ, Suthindhiran K (2016) Magnetotactic bacteria and magnetosomes-scope and challenges. Mater Sci Eng C 68:919–928

    CAS  Google Scholar 

  • Jiménez-Pérez JL, Sánchez-Ramírez JF, Cornejo-Monroy D, Gutierrez-Fuentes R, Rojas-Pescador JA, Cruz-Orea A, Algatti MA, Jacinto C (2012) Photothermal study of two different nanofluids containing SiO2 and TiO2 semiconductor nanoparticles. Int J Thermophys 33:60–79

    Google Scholar 

  • Judger BE, Ertan H, Bohl S, Lee M, Marquis CP, Manefield M (2016) Organohalide respiring bacteria and reductive dehalogenases: key tools in organohalide bioremediation. Front Microbiol 7. https://doi.org/10.3389/fmicb.2016.00249

  • Kaufmann F, Lovley DR (2001) Isolation and characterization of a soluble NADPH-dependent Fe(III) reductase from Geobacter sulfurreducens. J Bacteriol 183:4468–4476

    CAS  Google Scholar 

  • Kastrinaki G, Lorentzou S, Karagiannakis G, Rattenbury M, Woodhead J, Konstandopoulos AG (2018) Parametric synthesis of iron-based nanoparticles via aerosol spray pyrolysis route. J Aerosol Sci 115:96–107

    CAS  Google Scholar 

  • Khin M, Nair AS, Babu VJ, Murugan R, Ramakrishna S (2012) A review on nanomaterials for environmental remediation. Energy Environ Sci 5:8075–8109

    CAS  Google Scholar 

  • Kim YJ, Park CR (2002) Analysis of problematic complexing behavior of ferric chloride with N, N-Dimethylformamide using combined techniques of FT-IR, XPS and TGA/DTG. Inorg Chem 41(24):6211–6216. https://doi.org/10.1021/ic011306p

    Article  CAS  Google Scholar 

  • Kim Y, Lee Y, Roh Y (2015) Microbial synthesis of iron sulfide (FeS) and iron carbonate (FeCO3) nanoparticles. J Nanosci Nanotechnol 15:5794–5797

    CAS  Google Scholar 

  • Kim Y, Roh Y (2018) Effects of microbial growth conditions on synthesis of magnetite nanoparticles using indigenous Fe(III)-reducing bacteria. Minerals 8(5):212. https://doi.org/10.3390/min8050212

    Article  CAS  Google Scholar 

  • Kumar KS, Chen WS, Li L, Sung S (2006) Biohydrogen production in continuous-flow reactor using mixed microbial culture. Water Environ Res 78:110–117

    Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    CAS  Google Scholar 

  • Leitao P, Aulenta F, Rosetti S, Nows HPA, Danko AS (2018) Impact of magnetite nanoparticles on the syntrophic dichlorination of 1,2-dichloroethane. Sci Total Environ 624:17–23

    CAS  Google Scholar 

  • Lesiak B, Rangam N, Jiricek P, Gordeev I, Tóth J, Kövér L, Mohai M, Borowicz P (2019) Surface study of Fe3O4 nanoparticles functionalized with biocompatible adsorbed molecules. Front Chem 7:642

    CAS  Google Scholar 

  • Li YS, Church JS, Woodhead AL (2012) Infrared and Raman spectroscopic studies on iron oxide magnetic nano-particles and their surface modifications. J Magn Magn Mater 324:1543–1550

    CAS  Google Scholar 

  • Lim J, Yeap SP, Che HX, Low SC (2013) Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Res Lett 8:381–395

    Google Scholar 

  • Liu J, Römer I, Tang SVY, Valsami-Jones E, Palmer RE (2017) Crystallinity depends on choice of iron salt precursor in the continuous hydrothermal synthesis of Fe-Co oxide nanoparticles. RSC Adv 7(59):37436–37440

    CAS  Google Scholar 

  • Lohner ST, Spormann AM (2017) Identification of a reductive tetrachloroethene dehalogenase in Shewanella sediminis. Philos T R Soc 368. https://doi.org/10.1098/rstb.2012.0326

  • Lovley DR, Giovannoni SJ, White DC, Champine JE, Phillips EJ, Gorby JA, Gorby YA, Goodwin S (1993) Geobacter metallireducens gen nov sp nov a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 159:336–344

    CAS  Google Scholar 

  • Ma J, Wang L, Wu Y, Dong X, Ma Q, Qiao C, Zhang Q, Zhang J (2014) Facile synthesis of Fe3O4 nanoparticles with a high specific surface area. Mater Trans 55:1900–1902

    CAS  Google Scholar 

  • Machado S, Grosso JP, Nouws HPA, Albergaria JT, Delerue-Matos C (2014) Utilization of food industry wastes for the production of zero-valent iron nanoparticles. Sci Total Environ 496:233–240

    CAS  Google Scholar 

  • Magnuson TS, Isoyama N, Hodges-Myerson AL, Davidson G, Maroney M, Geesey GG, Lovley DR (2001) Isolation, characterization and gene sequence analysis of a membrane-associated 89 kDa Fe (III) reducing cytochrome c from Geobacter sulfurreducens. Biochem J 359:147–152

    CAS  Google Scholar 

  • Marzorati M, Ferra F, Van Raemdonck H, Borin S, Allifranchini E, Carpani G, Serbolisca L, Verstraete W, Boon N, Daffonchio D (2007) A novel reductive dehalogenase, identified in a contaminated groundwater enrichment culture and in Desulfitobacterium dichloroeliminans strain DCA1, is linked to dehalogenation of 1,2-Dichloroethane. Appl Environ Microbiol 73:2990–2999

    CAS  Google Scholar 

  • Mayer-Blackwell K, Azizian MF, Green JK, Spormann AM, Semprin L (2017) Survival of vinyl chloride respiring Dehalococcoides mccartyi under long-term electron donor limitation. Environ Sci Technol 51:1635–1642

    CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    CAS  Google Scholar 

  • Montgomery DC (2017) Design and analysis of experiments, 9th edn. Wiley, New York 640 pp

    Google Scholar 

  • Moreno-Medina CU, Poggi-Varaldo HM, Breton-Deval L, Rinderknecht-Seijas N (2017) Effect of sudden addition of PCE and bioreactor coupling to ZVI filters on performance of fluidized bed bioreactors operated in simultaneous electron acceptor modes. Environ Sci Pollut Res 24(33):25534–25549. https://doi.org/10.1007/s11356-016-7275-z

    Article  CAS  Google Scholar 

  • Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Minnesota USA 254:81–82

  • Muñoz-Páez KM, Ruiz-Ordaz N, García-Mena J, Ponce-Noyola MT, Ramos-Valdivia AC, Robles-González IV, Villa-Tanaca L, Barrera-Cortés J, Rinderknecht-Seijas N, Poggi-Varaldo HM (2013) Comparison of biohydrogen production in fluidized bed bioreactors at room temperature and 35 °C. Int J Hydrogen Energ 38:12570–12579

    Google Scholar 

  • Noguchi Y, Fujiwara T, Yoshimatsu K, Fukumori Y (1999) Iron reductase for magnetite synthesis in the magnetotactic bacterium Magnetospirillum magnetotacticum. J Bacteriol 181:2142–2147

    CAS  Google Scholar 

  • Oza M, Joshi MJ (2017) Hydrothermal synthesis of siderite nano-particles and characterizations. Functional Oxides and Nanomaterials AIP Conf. Proc. 1837, 040037-1-0400; https://doi.org/10.1063/1.4982121

  • Pérez-González M, Tomás SA, Santoyo-Salazar J, Gallardo-Hernández MM, Téllez-Cruz MM, Solorza-Feria O (2018) Sol-gel synthesis of Ag-loaded TiO2-ZnO thin films with enhanced photocatalytic activity. J Alloys Compd 779:908–917

    Google Scholar 

  • Piccinno F, Hischier R, Seeger S, Som C (2018) Predicting the environmental impact of a future nanocellulose production at industrial scale: application of the life cycle assessment scale-up framework. J Clean Prod 174:283–295

    CAS  Google Scholar 

  • Poggi-Varaldo HM, Oleszkiewicz JA (1992) Anaerobic co-composting of municipal solid waste and waste sludge at high total solids levels. Environ Technol 13(5):409–421

    CAS  Google Scholar 

  • Poggi-Varaldo HM, Munoz-Paez KM, Escamilla-Alvarado C, Robledo-Narváez PN, Ponce-Noyola MT, Calva-Calva G (2014) Biohydrogen, biomethane and bioelectricity as crucial components of biorefinery of organic wastes: a review. Waste Manag Res 32:353–365

    Google Scholar 

  • Poggi-Varaldo HM, Bárcenas-Torres JD, Moreno-Medina CU, García-Mena J, Garibay-Orijel C, Ríos-Leal E, Rindercknecht-Seijas N (2012) Influence of discontinuing feeding degradable co-substrate on the performance of a fluidized bed bioreactor treating a mixture of trichlorophenol and phenol. J Environ Manag 113:527–537

    CAS  Google Scholar 

  • Poulin S, Franca R, Moreau-Bélanger L, Sacher E (2010) Confirmation of X-ray photoelectron spectroscopy peak attributions of nanoparticulate iron oxides, using symmetric peak component line shapes. J Phys Chem C 114:10711–10718

    CAS  Google Scholar 

  • Radu T, Iacovita C, Benea D, Turcu R (2017) X-ray photoelectron spectroscopic characterization of iron oxide nanoparticles. Appl Surf Sci 405:337–343

    CAS  Google Scholar 

  • Ramírez-Nuñez AL, Jiménez-García LF, Goya GF, Sanz B, Santoyo-Salazar J (2018) In vitro magnetic hyperthermia using polyphenol-coated Fe3O4 and Fe2O3 nanoparticles from Cinnamomum verum and Vanilla planifolia: the concert of green synthesis and therapeutic possibilities. Nanotechnology 29:18–37

    Google Scholar 

  • Ripley LE, Boyle WC, Converse JC (1986) Improved alkalimetric monitoring for anaerobic digestion of high-strength waste. J Water Pollut Control Fed 58(5):406–411

    CAS  Google Scholar 

  • Ristic M, Krehula S, Reissner M, Music S (2017) 57Fe Mossbaüer, XRD, FT-IR, FE SEM analyses of natural goethite, hematite and siderite. Croat Chem Acta 90(3):499–507

    CAS  Google Scholar 

  • Robledo-Narváez PN, Muñoz-Páez KM, Poggi-Varaldo HM, Ríos-Leal E, Calva-Calva G, Ortega-Clemente LA, Rinderknecht-Seijas N, Estrada-Vázquez C, Ponce-Noyola MT, Salazar-Montoya JA (2013) The influence of total solids content and initial pH on batch biohydrogen production by solid substrate fermentation of agroindustrial wastes. J Environ Manag 128:126–137

    Google Scholar 

  • Roh Y, Liu SV, Li G, Huang H, Phelps TJ, Zhou J (2002) Isolation and characterization of metal-reducing Thermoanaerobacter strains from deep subsurface environments of the Piceance Basin, Colorado. Appl Environ Microbiol 68:6013–6020

    CAS  Google Scholar 

  • Ross DE, Ruebush SS, Brantley SL, Hartshorne RS, Clarke TA, Richardson DJ, Tien M (2007) Characterization of protein-protein interactions involved in iron reduction by Shewanella oneidensis MR-1. Appl Environ Microbiol 73:5797–5808

    CAS  Google Scholar 

  • Safarik I, Pospiskova K, Baldikova E, Safarikova M (2016) Development of advanced biorefinery concepts using magnetically responsive materials. Biochem Eng J 116:17–26

    CAS  Google Scholar 

  • Samaddar P, Ok YS, Kim KH, Kwon EE, Tsang DCW (2018) Synthesis of nanomaterials from various wastes and their new age applications. J CleanProd 197:1190–1209

    CAS  Google Scholar 

  • Santillán J, Williams Q (2004) A high-pressure infrared and X-ray study of FeCO3 and MnCO3 comparison with CaMg (CO3)2-dolomite. Phys Earth Planet Inter 143:291–304

    Google Scholar 

  • Saranya T, Parasuraman K, Anbarasu M, Balamurugan K (2015) XRD, FT-IR and SEM study of magnetite (Fe3O4) nanoparticles prepared by hydrothermal method. Nano Vision 5:149–154

    Google Scholar 

  • Sardjono RE, Khoerunnisa F, Musthopa I, Qowiyah A, Khairunisa D, Erfianty DD, Rachmawati R (2018) Biosynthesis, characterization and anti-Parkinson activity of magnetite-Indonesian velvet beans (Mucuna pruriens L.) nanoparticles. J Eng Sci Technol 13(12):4258–4270

    Google Scholar 

  • Satari B, Karimi K (2018) Citrus processing wastes: environmental impacts, recent advances, and future perspectives in total valorization. Resour Conserv Recycl 129:153–167

    Google Scholar 

  • Seabra AB, Haddad P, Duran N (2013) Biogenic synthesis of nanostructured iron compounds: applications and perspectives. IET Nanobiotechnol 7:90–99

    CAS  Google Scholar 

  • Sikora A, Blaszczyk M, Jurkowski M, Zielenkiewicz U (2013) Lactic acid bacteria in hydrogen-producing consortia: on purpose or by coincidence? Chapter 21. Lactic acid bacteria-R&D for food, health and livestock purposes. Intech Open. https://doi.org/10.5772/50364

  • Sotelo-Navarro PX, Poggi-Varaldo HM, Turpin-Marion SJ, Vázquez-Morillas A, Beltrán-Villavicencio M, Espinosa-Valdemar RM (2017) Biohydrogen production from used diapers: evaluation of effect of temperature and substrate conditioning. Waste Manag Res 35(3):267–275

    CAS  Google Scholar 

  • Staniland SS, Ward B, Harrison A (2009) Biosynthesis of magnetite by microbes. Chapter 21 in Neutron applications in earth energy and environmental sciences, neutron scattering applications techniques. https://doi.org/10.1007/978-0-387-09416-8 21, pp. 595-618

  • Sundaram PA, Augustine R, Kannan M (2012) Extracellular biosynthesis of iron oxide nanoparticles by Bacillus subtilis strains isolated from rhizosphere soil. Biotechnol Bioproc Eng 17:835–840

    CAS  Google Scholar 

  • Thunugunta T, Reddy AC, Reddy DCL (2015) Green synthesis of nanoparticles: current prospectus. Nanotechnol Rev 4:303–323

    CAS  Google Scholar 

  • US Environmental Protection Agency (2006) National perchloroethylene air emission standards for dry cleaning facilities – part II: final rule. Washington D.C, USEPA, Federal Register, 40 CFR Part 63

  • US Environmental Protection Agency (2017) Scope of the risk evaluation for perchloroethylene. CASRN:127-18-4. EPA Document #EPA-740-R1-7007

  • Vilaplana F, Strömberg E, Karlsson S (2010) Environmental and resource aspects of sustainable biocomposites. Polym Degrad Stab 95:2147–2161

    CAS  Google Scholar 

  • World Health Organization (2000) Air quality guidelines. In: Chapter 5.13: tetrachloroethylene, 2nd edn. Regional Office for Europe, Copenhagen

    Google Scholar 

  • Wu X, Lu S, Qiu Z, Sui Q, Lin K, Du X, Luo Q (2014) The reductive degradation of 1,1,1-trichloroethane by Fe (0) in a soil slurry system. Environ Sci Pollut Res 21:1401–1410

  • Xin J, Tang F, Yan J, La C, Zheng X, Liu W (2018) Investigating the efficiency of microscale zero valent iron-based in situ reactive zone (mZVI-IRZ) for TCE removal in fresh and saline groundwater. Sci Total Environ 626:638–649

    CAS  Google Scholar 

  • Yadav M (2018) Study on thermal and mechanical properties of cellulose/iron oxide bionanocomposites film. Composite Commun 10:1–5

    Google Scholar 

  • Yan L, Da H, Zhang S, Morillo-López V, Wang W (2017) Bacterial magnetosome and its potential application. Microbiol Res 203:19–28

    CAS  Google Scholar 

  • Yang P, Zhang R, McGarvey JA, Benemann JR (2007) Biohydrogen production from cheese processing wastewater by anaerobic fermentation using mixed microbial communities. Int J Hydrogen Prod 32:4761–4771

    CAS  Google Scholar 

  • Yeary LW, Moon JW, Love LJ, Thompson JR, Rawn CJ, Phelps TJ (2005) Magnetic properties of biosynthesized magnetite nanoparticles. IEEE Trans Magn 41:4384–4389

    CAS  Google Scholar 

  • Zhong YH, Yu L, Chen ZF, He H, Ye F, Cheng G, Zhang Q (2017) Microwave-assisted synthesis of Fe3O4 nanocrystals with predominantly exposed facets and their heterogeneous UVA/Fenton catalytic activity. ACS Appl Mater Interfaces 9:29203–29212. https://doi.org/10.1021/acsami.7b0692Zhong

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to gratefully recognize the Associate Editor and anonymous Reviewers for their advice and insightful comments. The authors wish to thank Mr. Rafael Hernández-Vera, M.Sc. (Environmental Biotechnology and Renewable Energies Group GBAER); Mr. Adolfo Tavira Fuentes, M. Sc. and Mr. Miguel Galvan Arellano, M.Sc. (both with SEES, Dept. Electrical Engineering); Dr. Álvaro Ángeles Pascual (LANE); Dr. Marcela Guerrero Cruz, Dr. Jaime Santoyo Salazar, Dr. Ángel Guillén Cervantes and Dr. Sergio Armando Tomás Velázquez (Dept. of Physics); Mr. Gabriel Marcelino Pérez, Cand. Dr. Sc. (Nanoscience and Nanotechnology Program); Prof. Elvira Ríos-Leal (Analytical Center of the Dept. of Biotechnology and Bioengineering); and Ms. Miriam Marisol Tellez Cruz, C and. Dr. Sc. (Dept. of Chemistry) from CINVESTAV-IPN, for their valuable advice and excellent technical assistance in operation and characterization of bioreactor performance as well as the characterization of bionanoparticles.

Funding

CINVESTAV-IPN provided partial financial support to this research. HMP-V also financially supported this research. CONACYT awarded a graduate scholarship No. 300205 to LRC and an Infrastructure Project to HMP-V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héctor M. Poggi-Varaldo.

Additional information

Responsible Editor: Santiago V. Luis

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 191 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero-Cedillo, L., Poggi-Varaldo, H.M., Santoyo-Salazar, J. et al. Biological synthesis of iron nanoparticles using hydrolysates from a waste-based biorefinery. Environ Sci Pollut Res 27, 28649–28669 (2020). https://doi.org/10.1007/s11356-020-08729-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-08729-w

Keywords

Navigation