Skip to main content

Advertisement

Log in

Heavy metal concentrations in roadside plants (Achillea wilhelmsii and Cardaria draba) and soils along some highways in Hamedan, west of Iran

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The present study was conducted to analyze the effects of traffic volumes on Cd, Cu, Pb, Ni, and Zn contents in roadside soils and in two dominant herbaceous species (Achillea wilhelmsii and Cardaria draba) along highways and to evaluate the dynamic characteristics of these elements and their accumulation by the aerial parts and roots of these herbaceous species. The plant samples were collected along 700 m of a 9-km segment of each of the three major highways in Hamedan Province (West Iran) with different traffic volumes: Hamedan-Goltapeh (HG), Hamedan-Razan (HR), and Hamedan-Kermanshah (HK). The results indicated that the mean contents of Cd, Cu, Pb, Ni, and Zn in the soil samples were 0.26, 18.74, 14.98, 18.21, and 62.25 mg kg−1, respectively. Furthermore, the mean contents of elements (mg kg−1) in aerial parts of A. wilhelmsii were 0.16 for Cd, 4.52 for Cu, 1.91 for Pb, 1.70 for Ni, and 44.80 for Zn, while in the aerial part samples of C. draba, the concentrations (mg kg−1) and the mean contents were 0.16, 2.29, 2.58, 1.60, and 31.29, respectively. This meant that the traffic volume affected the contents of the metals in the soil and the herbaceous species. The metal content in herbaceous tissues varied significantly between plant species. A. wilhelmsii tended to accumulate the metals in the roots while C. draba retained them mostly in the aerial parts. The significant positive correlations of Cd, Cu, Ni, and Zn content in root and aerial parts of the herbaceous plant with those found in the soil samples showed the potential of the studied species for application in biomonitoring studies. Comprehensive analysis (effect of traffic volumes and relationships between the content of elements in plant tissues and soil samples) indicated that Cu in both herbaceous plants was mainly derived from soil, while A. wilhelmsii absorbed Cd and C. draba absorbed Zn mainly through the stomata from atmospheric depositions. Without considering atmospheric depositions due to intense traffic volumes, in A. wilhelmsii, the translocation factor (TF) values of Cu and Zn were 1.06 and 1.44, respectively and in C. draba, the TF values of Cd, Cu, and Pb were 1.06, 1.09, and 1.13, respectively, thus suggesting that both herbaceous species had high potentials for transferring metals from the roots to aerial parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adamiec E (2017) Chemical fractionation and mobility of traffic-related elements in road environments. Environ Geochem Health 39:1457–1468

    CAS  Google Scholar 

  • Ahmed F, Fakhruddin ANM, Imam MDT, Khan N, Khan TA, Rahman MM, Abdullah ATM (2016) Spatial distribution and source identification of heavy metal pollution in roadside surface soil: a study of Dhaka Aricha highway Bangl. Ecol Process 5:1–16

    Google Scholar 

  • Aljazzar T, Kocher B (2016) Monitoring of contaminant input into roadside soil from road runoff and airborne deposition. Transport Res Procedia 14:2714–2723

    Google Scholar 

  • Alyemenia MN, Almohisen IAA (2014) Traffic and industrial activities around Riyadh cause the accumulation of heavy metals in legumes: a case study. Saudi J Biol Sci 21:167–172

    Google Scholar 

  • Aricak B, Cetin M, Erdem R, Sevik H, Cometen H (2019) The change of some heavy metal concentrations in scotch pine (Pinus sylvestris) depending on traffic density, organelle and washing. Appl Ecol Environ Res 17(3):6723–6734

    Google Scholar 

  • Badr N, Fawzy M, Al-Qahtani KM (2012) Phytoremediation: an ecological solution to heavy metal-polluted soil and evaluation of plant removal ability. World Appl Sci J 16(9):1292–1301

    Google Scholar 

  • Baycu G, Tolunay D, Özden H, Günebakan S (2006) Ecophysiological and seasonal variations in Cd, Pb, Zn and Ni concentrations in urban deciduous trees in Istanbul. Environ Pollut 143:545–554

    CAS  Google Scholar 

  • Bermejo-Orduna R, McBride JR, Shiraishi K, Elustondo D, Lasheras E, Santamaría JM (2014) Biomonitoring of traffic-related nitrogen pollution using Letharia vulpina (L.) Hue in the Sierra Nevada, California. Sci Total Environ 490:205–212

    CAS  Google Scholar 

  • Bhutto M, Ahmed M, Parveen Z, Riazuddin M (2006) Determination of heavy and essential metals in different wheat varieties grown in three districts of Sindh (Pakistan). Int J Agric Biol 8(4):448–449

    CAS  Google Scholar 

  • Bonanno G (2011) Trace element accumulation and distribution in the organs of Phragmites australis (common reed) and biomonitoring applications. Ecotoxicol Environ Saf 74:1057–1064

    CAS  Google Scholar 

  • Bonanno G (2013) Comparative performance of trace element bioaccumulation and bio-monitoring in the plant species Typha domingensis, Phragmites australis and Arundo donax. Ecotoxicol Environ Saf 97:124–130

    CAS  Google Scholar 

  • Bonanno G, Cirelli GL (2017) Comparative analysis of element concentrations and translocation in three wetland congener plants: Typha domingensis, Typha latifolia and Typha angustifolia. Ecotoxicol Environ Saf 143:92–101

    CAS  Google Scholar 

  • Chen M, Ma LQ (2001) Comparison of three aqua regia digestion methods for twenty Florida soils. Soil Sci Soc Am J 65:491–499

    CAS  Google Scholar 

  • Chen T-B, Zheng Y-M, Lei M, Huang Z-C, Wu H-T, Chen H, Fan K-K, Yu K, Wu X, Tian Q-Z (2005) Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere 60:542–551

    CAS  Google Scholar 

  • Chen ZQ, Ai YW, Fang C, Wang KX, Li W, Liu S, Li CL, Xiao JY, Huang ZY (2014) Distribution and phytoavailability of heavy metal chemical fractions in artificial soil on rock cut slopes alongside railways. J Hazard Mater 273:65–173

    Google Scholar 

  • Cicek A, Malkoc S, Koparal AS (2012) An investigation on the usability of grass in short term detection of traffic-related pollution. Arab J Sci Eng 37:1239–1245

    CAS  Google Scholar 

  • Davodpour R, Sobhanardakani S, Cheraghi M, Abdi N, Lorestani B (2019) Honeybees (Apis mellifera L.) as a potential bioindicator for detection of toxic and essential elements in the environment (case study: Markazi Province, Iran). Arch Environ Contam Toxicol 77(3):344–358

    CAS  Google Scholar 

  • Deboudt K, Flement P, Bertho M (2004) Cd, Cu, Pb and Zn concentration in atmospheric wet deposition at a coastal station in Western Europe. Water Air Soil Pollut 151:335–359

    CAS  Google Scholar 

  • Denier van der Gon HAC, Hulskotte JHJ, Visschedijk AJH, Schaap M (2007) A revised estimate of copper emissions from road transport in UNECE Europe and its impact on predicted copper concentrations. Atmos Environ 41:8697–8710

    CAS  Google Scholar 

  • Deska J, Bombik A, Marciniuk-Kluska A, Rymuza K (2011) Trends in lead and cadmium contents in soils adjacent to European track E30. Pol J Environ Stud 2:317–325

    Google Scholar 

  • Eid EM, Shaltout KH, El-SheikhMA AT (2012) Seasonal courses of nutrients and heavy metals in water, sediment and above-and below-ground Typha domingensis biomass in Lake Burullus (Egypt): perspectives for phytoremediation. Flora 207:783–794

    Google Scholar 

  • Farias S, Casa V, Vázquez C, Ferpozzi L, Pucci G, Cohen I (2003) Natural contamination with arsenic and other trace elements in ground waters of Argentine Pampean Plain. Sci Total Environ 309(1):187–199

    CAS  Google Scholar 

  • Feng J, Wang Y, Zhao J, Zhu L, Bian X, Zhang W (2011) Source attributions of heavy metals in rice plant along highway in Eastern China. J Environ Sci 23(7):1158–1164

    CAS  Google Scholar 

  • Francis A, Warwick SI (2008) The biology of Canadian weeds. 3. Lepidium draba L., L. chalepense L., L. appelianum Al-Shehbaz (updated). Can J Plant Sci 88(2):379–401

    Google Scholar 

  • Galal TM, Shehata HS (2015) Bioaccumulation and translocation of heavy metals by Plantago major L. grown in contaminated soils under the effect of traffic pollution. Ecol Indic 48:244–251

    CAS  Google Scholar 

  • Garcia R, Milan E (1998) Assessment of Cd, Pb and Zn in roadside soils and grasses from Gipuzkoa (Spain). Chemosphere 37(8):1615–1625

    CAS  Google Scholar 

  • Gebremedhin S, Enquselassie F, Umeta M (2011) Prevalence of prenatal zinc deficiency and its association with socio-demographic, dietary and health care related factors in rural Sidama, southern Ethiopia: a cross-sectional study. BMC Public Health 11:898

    CAS  Google Scholar 

  • Ghosh M, Singh SP (2005) A comparative study of cadmium phytoextraction by accumulator and weed species. Environ Pollut 133:365–371

    CAS  Google Scholar 

  • Gómez-Arroyo S, Cortés-Eslava J, Loza-Gómez P, Arenas-Huertero F, Grutter de la Mora M, Morton Bermea O (2018) In situ biomonitoring of air quality in rural and urban environments of Mexico Valley through genotoxicity evaluated in wild plants. Atmos Pollut Res 9(1):119–125

    Google Scholar 

  • Guala S, Vega FA, Covelo EF (2013) Modeling the plant–soil interaction in presence of heavy metal pollution and acidity variations. Environ Monit Assess 185:73–80

    CAS  Google Scholar 

  • Guan ZH, Li XG, Wang L (2018) Heavy metal enrichment in roadside soils in the eastern Tibetan Plateau. Environ Sci Pollut Res 25:7625–7637

    CAS  Google Scholar 

  • Gunawardana C, Goonetilleke A, Egodawatta P, Dawes L, Kokot S (2012) Source characterization of road dust based on chemical and mineralogical composition. Chemosphere 87:163–170

    CAS  Google Scholar 

  • Gupta S, Nayek S, Saha RN, Satpati S (2008) Assessment of heavy metal accumulation in macrophyte, agricultural soil and crop plants adjacent to discharge zone of sponge iron factory. Environ Geol 55:731–739

    CAS  Google Scholar 

  • Hosseini SM, Sobhanardakani S, Batebi Navaei M, Kariminasab M, Aghilinejad SM, Regenstein JM (2013a) Metal content in caviar of wild Persian sturgeon from the southern Caspian Sea. Environ Sci Pollut Res 20(8):5839–5843

    CAS  Google Scholar 

  • Hosseini SV, Sobhanardakani S, Tahergorabi R, Delfieh P (2013b) Selected heavy metals analysis of Persian sturgeon's (Acipenser persicus) caviar from southern Caspian Sea. Biol Trace Elem Res 154(3):357–362

    CAS  Google Scholar 

  • Hosseini SV, Sobhanardakani S, Kolangi Miandare H, Harsij M, Regenstein JM (2015) Determination of toxic (Pb, Cd) and essential (Zn, Mn) metals in canned tuna fish produced in Iran. J Environ Health Sci Eng 13:59

    Google Scholar 

  • Jankowski K, Jankowski J, Ciepiela G, Sosnowski J, Wiśniewska-Kadźajan B, Kolczarek R, Deska J (2014) Lead and cadmium content in some grasses along expressway areas. J Elem 19(1):119–128

    Google Scholar 

  • Jankowski K, Ciepiela AG, Jankowska J, Szulc W, Kolczarek R, Sosnowski J, Wiśniewska-Kadżajan B, Malinowska E, Radzka E, Czeluściński W, Deska J (2015) Content of lead and cadmium in aboveground plant organs of grasses growing on the areas adjacent to a route of big traffic. Environ Sci Pollut Res 22(2):978–987

    CAS  Google Scholar 

  • Jankowski K, Malinowska EA, Ciepiela G, Jankowska J, Wiśniewska-Kadżajan B, Sosnowski J (2019) Lead and cadmium content in grass growing near an expressway. Arch Environ Contam Toxicol 76:66–75

    CAS  Google Scholar 

  • Jiang Y, Chao S, Liu J, Yang Y, Chen Y, Zhang A, Cao H (2017) Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China. Chemosphere 168:1658–1668

    CAS  Google Scholar 

  • Jimenez MD, de Torre R, Mola I, Casado MA, Balaguer (2018) Local plant responses to global problems: Dactylis glomerata responses to different traffic pollutants on roadsides. J Environ Manag 212:440–449

    CAS  Google Scholar 

  • Johansson C, Norman M, Burman L (2009) Road traffic emission factors for heavy metals. Atmos Environ 43(31):4681–4688

    CAS  Google Scholar 

  • Jozic M, Peer T, Turk R (2009) The impact of the tunnel exhausts in terms of heavy metals to the surrounding ecosystem. Environ Monit Assess 15:261–271

    Google Scholar 

  • Kelepertzis E, Paraskevopoulou V, Argyraki A, Fligos G, Chalkiadaki O (2015) Evaluation of single extraction procedures for the assessment of heavy metal extractability in citrus agricultural soil of a typical Mediterranean environment (Argolida, Greece). J Soils Sediments 15:2265–2275

    CAS  Google Scholar 

  • Khalid N, Hussain MS, Young H, Ashraf M, Hameed M, Ahmad R (2018) Lead concentrations in soils and some wild plant species along two busy roads in Pakistan. Bull Environ Contam Toxicol 100(2):250–258

    CAS  Google Scholar 

  • Lai HY, Chen ZS (2004) Effects of EDTA on solubility of cadmium, zinc, and lead and their uptake by rainbow pink and vetiver grass. Chemosphere 55:421–430

    CAS  Google Scholar 

  • Li X, Lee SI, Sc W, Shi W, Thornton I (2004) The study of metal contamination in urban soils of Hong Kong using a GIS-based approach. Environ Pollut 129:113–124

    CAS  Google Scholar 

  • Li FR, Kang LF, Gao XQ, Hua W, Yang FW, Hei WL (2007) Traffic-related heavy metal accumulation in soils and plants in Northwest China. Soil Sediment Contam 16(5):473–484

    CAS  Google Scholar 

  • Li J, Lu Y, Yin W, Gan H, Zhang C, Deng X, Deng X, Lian J (2009) Distribution of heavy metals in agricultural soils near a petrochemical complex in Guangzhou, China. Environ Monit Assess 153:365–375

    CAS  Google Scholar 

  • Ling W, Shen Q, Gao Y, Gu X, Yang Z (2007) Use of bentonite to control the release of copper from contaminated soils. Aust J Soil Res 45(8):618–623

    CAS  Google Scholar 

  • Liu J, Cui B, Dong S, Zhu J, Yao W (2006) Study on the effect of highway construction on photosynthetic rate of roadsides plant in Longitudinal Range-Gorge Region. Chin Sci Bull 51:59–68

    CAS  Google Scholar 

  • Lu XW, Zhang XL, Li LY, Chen H (2014) Assessment of metals pollution and health risk in dust from nursery schools in Xi’an, China. Environ Res 128:27–34

    CAS  Google Scholar 

  • Maiti SK, Rana V (2017) Assessment of heavy metals contamination in reclaimed mine soil and their accumulation and distribution in eucalyptus hybrid. Bull Environ Contam Toxicol 98(1):97–104

    CAS  Google Scholar 

  • Malinowska E, Jankowski K, Wiśniewska-Kadżajan B, Sosnowski J, Kolczarek R, Jankowska J, Ciepiela GA (2015) Content of zinc and copper in selected plants growing along a motorway. Bull Environ Contam Toxicol 95(5):638–673

    CAS  Google Scholar 

  • Malizia D, Giuliano A, Ortaggi G, Masotti A (2012) Common plants as alternative analytical tools to monitor heavy metals in soil. Chem Cent J 6(Suppl 2):S6

    CAS  Google Scholar 

  • McKenzie ER, Money JE, Gren PG, Young TM (2009) Metals associated with stormwater-relevant brake and tire samples. Sci Total Environ 407:5855–5860

    CAS  Google Scholar 

  • Miri M, Allahabadi A, Ghaffari HR, Fathabadi ZA, Raisi Z, Rezai M, Aval MY (2016) Ecological risk assessment of heavy metal (HM) pollution in the ambient air using a new bio-indicator. Environ Sci Pollut Res 23:14210–14220

    CAS  Google Scholar 

  • Modrzewska B, Wyszkowski M (2014) Trace metals content in soils along the state road 51 (northeastern Poland). Environ Monit Assess 186(4):2589–2597

    CAS  Google Scholar 

  • Mohammadi Roozbahani M, Sobhanardakani S, Karimi H, Sorooshnia R (2015) Natural and anthropogenic source of heavy metals pollution in the soil samples of an industrial complex a case study. Iran J Toxicol 9(29):1336–1341

    Google Scholar 

  • Mohammadi MJ, Yari AR, Saghazadeh M, Sobhanardakani S, Geravandi S, Afkar A, Salehi SZ, Valipour A, Biglari H, Hosseini SA, Rastegarimehr B, Vosoughi M, Omidi Khaniabadi Y (2018) A health risk assessment of heavy metals in people consuming Sohan in Qom, Iran. Toxin Rev 37(4):278–286

    CAS  Google Scholar 

  • Mori J, Sæbø R, Martin Hanslin H, Teani A, Ferrini F, Fini A, Burchi G (2015) Deposition of traffic-related air pollutants on leaves of six evergreen shrub species during a Mediterranean summer season. Urban For Urban Green 14:264–273

    Google Scholar 

  • Muhammad D, Chen F, Zhao J, Zhang GP, Wu FB (2009) Comparison of EDTA and citric acid-enhanced phytoextraction of heavy metals in artificially metal contaminated soil by Typha angustifolia. Int J Phytoremediat 11:558–574

    CAS  Google Scholar 

  • Musilova J, Bystricka J, Lachman J, Harangozo L, Trebichalsky P, Volnova B (2016) Potatoes–a crop resistant against input of heavy metals from the metallicaly contaminated soil. Int J Phytoremediation 18(6):547–552

    CAS  Google Scholar 

  • Nabulo G, Oryem-Origa H, Diamond M (2006) Assessment of lead, cadmium, and zinc contamination of roadside soils, surface films, and vegetables in Kampala City, Uganda. Environ Res 101:42–52

    CAS  Google Scholar 

  • Nadgorska-Socha A, Kandziora-Ciupa M, Trzesicki M, Barczyk G (2017) Air pollution tolerance index and heavy metal bioaccumulation in selected plant species from urban biotopes. Chemosphere 183:471–482

    CAS  Google Scholar 

  • Naszradi T, Badacsonyi A, Nemeth N, Tuba Z, Batic F (2004) Zinc, lead and cadmium content in meadow plants and mosses along the M3 motorway (Hungary). J Atmos Chem 49:593–603

    CAS  Google Scholar 

  • Nikolaeva O, Rozanova M, Karpukhin (2017) Distribution of traffic-related contaminants in urban topsoils across a highway in Moscow. J Soils Sediments 17:1045–1053

    CAS  Google Scholar 

  • Ok YS, Yang JE, Zhang YS, Kim SJ, Chung DY (2007) Heavy metal adsorption by a formulated zeolite-Portland cement mixture. J Hazard Mater 147:91–96

    CAS  Google Scholar 

  • Papanikolaou NC, Hatzidaki EG, Belivanis S, Tzanakakis GN, Tsatsakis AM (2005) Lead toxicity update. A brief review. Med Sci Monit 11:329–336

    Google Scholar 

  • Peralta-Videa JR, Lopez ML, Narayan M, Saupe G, Gardea-Torresdey J (2009) The biochemistry of environmental heavy metal uptake by plants; implications for the food chain. Int J Biochem Cell Biol 41(8):1665–1677

    CAS  Google Scholar 

  • Pérez-López R, Álvarez-Valero AM, Nieto JM, Sáez R, Matos JX (2008) Use of sequential extraction procedure for assessing the environmental impact at regional scale of the São Domingos Mine (Iberian Pyrite Belt). Appl Geochem 23:3452–3463

    Google Scholar 

  • Sabzevari E, Sobhanardakani S (2018) Analysis of selected heavy metals in indoor dust collected from city of Khorramabad, Iran: a case study. Jundishapur J Health Sci 10(3):e67382

    Google Scholar 

  • Sagi Y, Yigit SA (2012) Heavy metals in Yeniçága Lake and its potential sources: soil, water, sediment, and plankton. Environ Monit Assess 184:1379–1389

    Google Scholar 

  • Sawidis T, Breuste J, Mitrovic M, Pavlovic P, Tsigaridas K (2011) Trees as bioindicator of heavy metal pollution in three European cities. Environ Pollut 159:3560–3570

    CAS  Google Scholar 

  • Sawidis T, Krystallidis P, Veros D, Chettri M (2012) A study of air pollution with heavy metals in Athens city and Attica basin using evergreen trees as biological indicators. Biol Trace Elem Res 148:396–408

    CAS  Google Scholar 

  • Sevik H, Ozel HB, Cetin M, Özel HU, Erdem T (2019) Determination of changes in heavy metal accumulation depending on plant species, plant organism, and traffic density in some landscape plants. Air Qual Atmos Health 12(2):189–195

    CAS  Google Scholar 

  • Shokri Ragheb P, Sobhanardakani S (2016) Analysis of Co, Cr and Mn concentrations in atmospheric dry deposition in Hamadan City. Sci J Hamadan Univ Med Sci 23(2):149–156 (In Persian)

    Google Scholar 

  • Silva SD, Ball AS, Huynh T, Reichman SM (2016) Metal accumulation in roadside soil in Melbourne, Australia: effect of road age, traffic density and vehicular speed. Environ Pollut 208:102–109

    Google Scholar 

  • Sobhanardakani S (2017) Tuna fish and common kilka: health risk assessment of metal pollution through consumption of canned fish in Iran. J Consum Prot Food Saf 12(2):157–163

    CAS  Google Scholar 

  • Sobhanardakani S (2018a) Human health risk assessment of Cd, Cu, Pb and Zn through consumption of raw and pasteurized cow’s milk. Iran J Public Health 47(8):1172–1180

    Google Scholar 

  • Sobhanardakani S (2018b) Human health risk assessment of potentially toxic heavy metals in the atmospheric dust of city of Hamedan, west of Iran. Environ Sci Pollut Res 25(28):28086–28093

    CAS  Google Scholar 

  • Sobhanardakani S (2019) Ecological and human health risk assessment of heavy metals content of atmospheric dry deposition, a case study: Kermanshah, Iran. Biol Trace Elem Res 187(2):602–610

    CAS  Google Scholar 

  • Sobhanardakani S, Ghoochian M (2016) Analysis of heavy metals in surface sediments from Agh Gel Wetland, Iran. Iran J Toxicol 34:41–46

    Google Scholar 

  • Sobhanardakani S, Tayebi L, Farmany A (2011) Toxic metal (Pb, Hg and As) contamination of muscle, gill and liver tissues of Otolithes rubber, Pampus argenteus, Parastromateus niger, Scomberomorus commerson and Onchorynchus mykiss. World Appl Sci J 14(10):1453–1456

    CAS  Google Scholar 

  • Sobhanardakani S, Ghoochian M, Taghavi L (2016) Assessment of heavy metal contamination in surface sediment of the Darreh-Morad Beyg River. Iran J Health Sci 4(3):22–34

    Google Scholar 

  • Sobhanardakani S, Hosseini SV, Kolangi Miandare H, Faizbakhsh R, Harsij M, Regenstein JM (2017) Determination of Cd, Cu, Mn and Zn concentrations in Iranian Caspian Sea caviar of Acipenser persicus using anodic stripping voltammetry. Iran J Sci Technol Trans Sci 41(1):139–144

    Google Scholar 

  • Sobhanardakani S, Tayebi L, Hosseini SV (2018) Health risk assessment of arsenic and heavy metals (Cd, Cu, Co, Pb, and Sn) through consumption of caviar of Acipenser persicus from southern Caspian Sea. Environ Sci Pollut Res 25(3):2664–2671

    CAS  Google Scholar 

  • Taskila S, Tuomola M, Ojamo H (2012) Enrichment cultivation in detection of food-borne salmonella. Food Control 26:369–377

    Google Scholar 

  • Turkyilmaz A, Sevik H, Cetin M, Ahmaida Saleh EA (2018a) Changes in heavy metal accumulation depending on traffic density in some landscape plants. Pol J Environ Stud 27(5):2277–2284

    CAS  Google Scholar 

  • Turkyilmaz A, Sevik H, Cetin M (2018b) The use of perennial needles as bio-monitors for recently accumulated heavy metals. Landsc Ecol Eng 14(1):115–120

    Google Scholar 

  • Turkyilmaz A, Sevik H, Isinkaralar K, Cetin M (2019) Use of tree rings as a bioindicator to observe atmospheric heavy metal deposition. Environ Sci Pollut Res 26:5122–5130

    CAS  Google Scholar 

  • Wang H, Nie L, Xu Y, Li M, Lv Y (2018) Traffic-emitted metal status and uptake by Carex meyeriana Kunth and Thelypteris palustris var. pubescens Fernald growing in roadside turfy swamp in the Changbai Mountain area, China. Environ Sci Pollut Res 25:18498–18509

    CAS  Google Scholar 

  • Weis JS, Weis P (2004) Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int 30:685–700

    CAS  Google Scholar 

  • Werkenthin M, Kluge B, Wessolek G (2014) Metals in European roadside soils and soil solution a review. Environ Pollut 189:98–110

    CAS  Google Scholar 

  • Wiseman CLS, Zereini F, Püttmann W (2013) Traffic-related trace element fate and uptake by plants cultivated in roadside soils in Toronto, Canada. Sci Total Environ 442:86–95

    CAS  Google Scholar 

  • Wiseman CLS, Zereini F, Püttmann W (2014) Metal translocation patterns in Solanum melongena grown in close proximity to traffic. Environ Sci Pollut Res 21(2):1572–1581

    CAS  Google Scholar 

  • Wiśniewska-Kadżajan B, Jankowski K, Malinowska E, Kolczarek R, Sosnowski J, Jankowska J, Ciepiela GA, Szulc W (2015) Copper content in some grasses from the areas adjacent to the E30 highway in Poland. Fresenius Environ Bull 24(2):498–5904

    Google Scholar 

  • Yan X, Gao D, Zhang F, Zeng C, Xiang W, Zhang M (2013) Relationships between heavy metal concentrations in roadside topsoil and distance to road edge based on field observations in the Qinghai–Tibet Plateau, China. Int J Environ Res Public Health 10(3):762–775

    CAS  Google Scholar 

  • Yazdanpanah E, Moradshahi A, Rowshan V (2014) The effects of growth habitat of medicinal plant yarrow (Achillea wilhelmsii c.koch) on the essential oil constituents. Indian J Fund Appl Life Sci 4(4):36–42

    Google Scholar 

  • Zhai Y, Dai Q, Jiang K, Zhu Y, Xu B, Peng C, Wang T, Zeng G (2016) Traffic-related heavy metals uptake by wild plants grow along two main highways in Hunan Province, China: effects of soil factors, accumulation ability, and biological indication potential. Environ Sci Pollut Res 21(2):1572–1158

    Google Scholar 

  • Zhang Y, Li D, Zhang Z, Liao K (2010) A comparison study of two methods for mensuration of soil cation exchange capacity. Guizhou For Sci Technol 38:45–49

    Google Scholar 

  • Zhang H, Wang Z, Zeng C, Zhang Y, Ding M, Li L (2015) Identification of traffic-related metals and the effects of different environments on their enrichment in roadside soils along the Qinghai–Tibet highway. Sci Total Environ 521-522:160–172

    CAS  Google Scholar 

  • Zhang H, Zhang Y, Wang Z, Ding M, Jiang Y, Xie Z (2016) Traffic-related metal(loid) status and uptake by dominant plants growing naturally in roadside soils in the Tibetan plateau, China. Sci Total Environ 573:915–923

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Hamedan Branch, Islamic Azad University for providing instruments to conduct and complete this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soheil Sobhanardakani.

Additional information

Responsible editor: Roberto Terzano

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, N.S., Sobhanardakani, S., Cheraghi, M. et al. Heavy metal concentrations in roadside plants (Achillea wilhelmsii and Cardaria draba) and soils along some highways in Hamedan, west of Iran. Environ Sci Pollut Res 27, 13301–13314 (2020). https://doi.org/10.1007/s11356-020-07874-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-07874-6

Keywords

Navigation