Skip to main content

Advertisement

Log in

Improved chromium reduction and removal from wastewater in continuous flow bioelectrochemical systems

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Bioelectrochemical systems (BESs) including microbial electrolysis cells (MECs) and microbial fuel cells (MFCs) are promising for hexavalent chromium [Cr(VI)] reduction and total chromium (Cr) removal from wastewater. This study assessed the performance of simple, inexpensive, and continuous flow BESs with neither cathode catalyst nor proton exchange membrane for Cr(VI) reduction and total Cr removal. The effect of bioreactor configuration and wastewater feed mode on the performance of the BESs was investigated. Biological Cr(VI) reduction in the MEC followed a first-order kinetics with a rate constant of 0.103 d−1, significantly higher than that of the control (0.033 d−1). For comparison, the first-order reduction rate constants in the MFCs with the Cr(VI) fed to the anodic and the cathodic zones were 0.072 and 0.064 d−1, respectively. The BESs improved total Cr removal through coprecipitating Cr(III) and phosphors as evidenced from the scanning electron microscopy energy-dispersive X-ray spectroscopy analysis. The total Cr removal efficiencies in the control, MFCs, and MEC were 26.1%, 56.7%, and 66.2%, respectively. Only 25.1% to 26.7% of total Cr was present intracellularly in the BESs (both MFCs and MEC), whereas 31.8% ± 1.4% and 38.0% ± 0.9% of total Cr in the anodic and cathodic zones of the control were present intracellularly. Overall, the BESs demonstrated a great potential to reduce Cr(VI) and remove total Cr with the MEC having the fastest Cr(VI) reduction and most efficient total Cr removal. Furthermore, the BESs significantly reduced the intracellular total Cr content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al-Shannag M, Al-Qodah Z, Bani-Melhem K, Qtaishat MR, Alkasrawi M (2015) Heavy metal ions removal from metal plating wastewater using electrocoagulation: kinetic study and process performance. Chem Eng J 260:749–756

    CAS  Google Scholar 

  • APHA (2012) Standard Methods for the Examination of Water and Wastewater, American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), 22nd edn, Washington, DC, USA

  • Arias YM, Tebo BM (2003) Cr(VI) reduction by sulfidogenic and nonsulfidogenic microbial consortia. Appl Environ Microbiol 69(3):1847–1853

    CAS  Google Scholar 

  • Bozzola JJ, Russell LD (1999) Electron Microscopy: Principles and Techniques for Biologists, 2nd edn. Jones and Bartlett Publishers, Inc, Boston, USA

  • Buerge IJ, Hug SJ (1997) Kinetics and pH dependence of chromium(VI) reduction by iron(II). Environ Sci Technol 31(5):1426–1432

    CAS  Google Scholar 

  • Cheballah K, Sahmoune A, Messaoudi K, Drouiche N, Lounici H (2015) Simultaneous removal of hexavalent chromium and COD from industrial wastewater by bipolar electrocoagulation. Chem Eng Process 96:94–99

    CAS  Google Scholar 

  • Chen JM, Hao OJ (1998) Microbial chromium (VI) reduction. Crit Rev Environ Sci Technol 28(3):219–251

    Google Scholar 

  • Cheng S, Liu H, Logan BE (2006) Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environ Sci Technol 40(7):2426–2432

    CAS  Google Scholar 

  • Clauwaert P, Rabaey K, Aelterman P, De Schamphelaire L, Pham TH, Boeckx P, Boon N, Verstraete W (2007) Biological denitrification in microbial fuel cells. Environ Sci Technol 41(9):3354–3360

    CAS  Google Scholar 

  • Eary LE, Rai D (1987) Kinetics of chromium(III) oxidation to chromium(VI) by reaction with manganese dioxide. Environ Sci Technol 21(12):1187–1193

    Google Scholar 

  • Gajaraj S, Hu Z (2014) Integration of microbial fuel cell techniques into activated sludge wastewater treatment processes to improve nitrogen removal and reduce sludge production. Chemosphere 117:151–157

    CAS  Google Scholar 

  • Gregory KB, Lovley DR (2005) Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ Sci Technol 39(22):8943–8947

    CAS  Google Scholar 

  • Gupta S, Yadav A, Verma N (2017) Simultaneous Cr(VI) reduction and bioelectricity generation using microbial fuel cell based on alumina-nickel nanoparticles-dispersed carbon nanofiber electrode. Chem Eng J 307:729–738

    CAS  Google Scholar 

  • Habibul N, Hu Y, Wang YK, Chen W, Yu HQ, Sheng GP (2016) Bioelectrochemical chromium(VI) removal in plant-microbial fuel cells. Environ Sci Technol 50(7):3882–3889

    CAS  Google Scholar 

  • Han R, Li F, Liu T, Li X, Wu Y, Wang Y, Chen D (2016) Effects of incubation conditions on Cr(VI) reduction by c-type cytochromes in intact Shewanella oneidensis MR-1 cells. Front Microbiol 7:746

    Google Scholar 

  • Hosseini MS, Belador F (2009) Cr(III)/Cr(VI) speciation determination of chromium in water samples by luminescence quenching of quercetin. J Hazard Mater 165(1-3):1062–1067

    CAS  Google Scholar 

  • Hu Z, Chandran K, Grasso D, Smets BF (2002) Effect of nickel and cadmium speciation on nitrification inhibition. Environ Sci Technol 36(14):3074–3078

    CAS  Google Scholar 

  • Huang L, Chen J, Quan X, Yang F (2010) Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell. Bioprocess Biosyst Eng 33(8):937–945

    CAS  Google Scholar 

  • Huang L, Chai X, Chen G, Logan BE (2011a) Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells. Environ Sci Technol 45(11):5025–5031

    CAS  Google Scholar 

  • Huang L, Cheng S, Chen G (2011b) Bioelectrochemical systems for efficient recalcitrant wastes treatment. J Chem Technol Biotechnol 86(4):481–491

    CAS  Google Scholar 

  • Huang L, Wang Q, Jiang L, Zhou P, Quan X, Logan BE (2015) Adaptively evolving bacterial communities for complete and selective reduction of Cr(VI), Cu(II), and Cd(II) in biocathode bioelectrochemical systems. Environ Sci Technol 49(16):9914–9924

    CAS  Google Scholar 

  • Ishibashi Y, Cervantes C, Silver S (1990) Chromium reduction in Pseudomonas putid. Appl Environ Microbiol 56(7):2268–2270

    CAS  Google Scholar 

  • Jin W, Du H, Zheng S, Zhang Y (2016) Electrochemical processes for the environmental remediation of toxic Cr(VI): a review. Electrochim Acta 191:1044–1055

    CAS  Google Scholar 

  • Li Z, Zhang X, Lei L (2008) Electricity production during the treatment of real electroplating wastewater containing Cr6+ using microbial fuel cell. Process Biochem 43(12):1352–1358

    CAS  Google Scholar 

  • Li M, Zhou S, Xu Y, Liu Z, Ma F, Zhi L, Zhou X (2018) Simultaneous Cr(VI) reduction and bioelectricity generation in a dual chamber microbial fuel cell. Chem Eng J 334:1621–1629

    CAS  Google Scholar 

  • Liang Z, Hu Z (2012) Start-up performance evaluation of submerged membrane bioreactors using conventional activated sludge process and modified Luzack-Ettinger process. J Environ Eng 138(9):932–939

    CAS  Google Scholar 

  • Liu C, Gorby YA, Zachara JM, Fredrickson JK, Brown CF (2002) Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal-reducing bacteria. Biotechnol Bioeng 80(6):637–649

    CAS  Google Scholar 

  • Liu L, Yuan Y, Li F, Feng C (2011) In-situ Cr(VI) reduction with electrogenerated hydrogen peroxide driven by iron-reducing bacteria. Bioresour Technol 102(3):2468–2473

    CAS  Google Scholar 

  • Liu W, Ni J, Yin X (2014) Synergy of photocatalysis and adsorption for simultaneous removal of Cr (VI) and Cr (III) with TiO2 and titanate nanotubes. Water Res 53:12–25

    CAS  Google Scholar 

  • Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40(17):5181–5192

    CAS  Google Scholar 

  • Lovley DR, Phillips EJP, Gorby YA, Landa ER (1991) Microbial reduction of uranium. Nature 350(6317):413–416

    CAS  Google Scholar 

  • Lu J, Wang Z, Liu Y, Tang Q (2016) Removal of Cr ions from aqueous solution using batch electrocoagulation: Cr removal mechanism and utilization rate of in situ generated metal ions. Process Saf Environ Prot 104:436–443

    CAS  Google Scholar 

  • Mandiwana K, Panichev N, Kataeva M, Siebert S (2007) The solubility of Cr(III) and Cr(VI) compounds in soil and their availability to plants. J Hazard Mater 147(1-2):540–545

    CAS  Google Scholar 

  • Mohan D, Pittman CU Jr (2006) Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J Hazard Mater 137(2):762–811

    CAS  Google Scholar 

  • Nancharaiah Y, Mohan SV, Lens P (2015) Metals removal and recovery in bioelectrochemical systems: a review. Bioresour Technol 195:102–114

    CAS  Google Scholar 

  • Pandit S, Sengupta A, Kale S, Das D (2011) Performance of electron acceptors in catholyte of a two-chambered microbial fuel cell using anion exchange membrane. Bioresour Technol 102(3):2736–2744

    CAS  Google Scholar 

  • Qin G, McGuire MJ, Blute NK, Seidel C, Fong L (2005) Hexavalent chromium removal by reduction with ferrous sulfate, coagulation, and filtration: a pilot-scale study. Environ Sci Technol 39(16):6321–6327

    CAS  Google Scholar 

  • Rai D, Eary L, Zachara JM (1989) Environmental chemistry of chromium. Sci Total Environ 86(1-2):15–23

    CAS  Google Scholar 

  • Rozendal RA, Hamelers HVM, Rabaey K, Keller J, Buisman CJN (2008) Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol 26(8):450–459

    CAS  Google Scholar 

  • Rutigliano L, Fino D, Saracco G, Specchia V, Spinelli P (2008) Electrokinetic remediation of soils contaminated with heavy metals. J Appl Electrochem 38(7):1035–1041

    CAS  Google Scholar 

  • Schmieman EA, Yonge DR, Rege MA, Petersen JN, Turick CE, Johnstone DL, Apel WA (1998) Comparative kinetics of bacterial reduction of chromium. J Environ Eng 124(5):449–455

    CAS  Google Scholar 

  • Song T, Jin Y, Bao J, Kang D, Xie J (2016) Graphene/biofilm composites for enhancement of hexavalent chromium reduction and electricity production in a biocathode microbial fuel cell. J Hazard Mater 317:73–80

    CAS  Google Scholar 

  • Sukkasem C, Xu S, Park S, Boonsawang P, Liu H (2008) Effect of nitrate on the performance of single chamber air cathode microbial fuel cells. Water Res 42(19):4743–4750

    CAS  Google Scholar 

  • Tandukar M, Huber SJ, Onodera T, Pavlostathis SG (2009) Biological chromium(VI) reduction in the cathode of a microbial fuel cell. Environ Sci Technol 43(21):8159–8165

    CAS  Google Scholar 

  • Tebo BM, Obraztsova AY (1998) Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptors. FEMS Microbiol Lett 162(1):193–198

    CAS  Google Scholar 

  • Tovar-Sanchez A, Sañudo-Wilhelmy SA, Garcia-Vargas M, Weaver RS, Popels LC, Hutchins DA (2003) A trace metal clean reagent to remove surface-bound iron from marine phytoplankton. Mar Chem 82(1-2):91–99

    CAS  Google Scholar 

  • Vainshtein M, Kuschk P, Mattusch J, Vatsourina A, Wiessner A (2003) Model experiments on the microbial removal of chromium from contaminated groundwater. Water Res 37(6):1401–1405

    CAS  Google Scholar 

  • Vaiopoulou E, Gikas P (2012) Effects of chromium on activated sludge and on the performance of wastewater treatment plants: a review. Water Res 46(3):549–570

    CAS  Google Scholar 

  • Villaescusa I, Marti S, Matas C, Martine M, Ribó JM (1997) Chromium(VI) toxicity to luminescent bacteria. Environ Toxicol Chem 16(5):871–874

    CAS  Google Scholar 

  • Virdis B, Rabaey K, Rozendal RA, Yuan Z, Keller J (2010) Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells. Water Res 44(9):2970–2980

    CAS  Google Scholar 

  • Wang H, Ren ZJ (2014) Bioelectrochemical metal recovery from wastewater: a review. Water Res 66:219–232

    CAS  Google Scholar 

  • Wang G, Huang L, Zhang Y (2008) Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells. Biotechnol Lett 30(11):1959–1966

    CAS  Google Scholar 

  • Wang H, Luo H, Fallgren PH, Jin S, Ren ZJ (2015) Bioelectrochemical system platform for sustainable environmental remediation and energy generation. Biotechnol Adv 33(3):317–334

    Google Scholar 

  • Wang Q, Huang L, Pan Y, Quan X, Li Puma G (2017) Impact of Fe(III) as an effective electron-shuttle mediator for enhanced Cr(VI) reduction in microbial fuel cells: reduction of diffusional resistances and cathode overpotentials. J Hazard Mater 321:896–906

    CAS  Google Scholar 

  • Wu S, Ge Y, Wang Y, Chen X, Li F, Xuan H, Li X (2018) Adsorption of Cr(VI) on nano Uio-66-NH2 MOFs in water. Environ Technol 39(15):1937–1948

    CAS  Google Scholar 

  • Xu C, Yang W, Liu W, Sun H, Jiao C, Lin A (2018) Performance and mechanism of Cr(VI) removal by zero-valent iron loaded onto expanded graphite. J Environ Sci 67:14–22

    Google Scholar 

  • Zhang C, Liang Z, Hu Z (2014) Bacterial response to a continuous long-term exposure of silver nanoparticles at sub-ppm silver concentrations in a membrane bioreactor activated sludge system. Water Res 50:350–358

    CAS  Google Scholar 

  • Zhang C, Brown PJ, Miles RJ, White TA, Grant DG, Stalla D, Hu Z (2019) Inhibition of regrowth of planktonic and biofilm bacteria after peracetic acid disinfection. Water Res 149:640–649

    CAS  Google Scholar 

  • Zhou L, Li R, Zhang G, Wang D, Cai D, Wu Z (2018) Zero-valent iron nanoparticles supported by functionalized waste rock wool for efficient removal of hexavalent chromium. Chem Eng J 339:85–96

    CAS  Google Scholar 

Download references

Funding

This work was financially supported by the MIZZOU Advantage Program at the University of Missouri (Columbia, MO).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chiqian Zhang or Zhiqiang Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Ioannis A. Katsoyiannis

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gajaraj, S., Sun, X., Zhang, C. et al. Improved chromium reduction and removal from wastewater in continuous flow bioelectrochemical systems. Environ Sci Pollut Res 26, 31945–31955 (2019). https://doi.org/10.1007/s11356-019-06289-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06289-2

Keywords

Navigation