Skip to main content
Log in

Efficient photocatalytic methylene blue degradation by Fe3O4@TiO2 core/shell linked to graphene by aminopropyltrimethoxysilane

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In the present article, Fe3O4@TiO2 core/shell (FT) linked to graphene was fabricated by sol–gel technique as a photocatalyst and was employed for the solar degradation of cationic methylene blue (MB) in aqueous solution. The prepared core/shells were linked to graphene oxide (FTGO) and reduced graphene oxide (FTRGO) via embedding into 3-aminopropyltrimethoxysilane (APS). The structure of this magnetic composition was characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), vibrating sample magnetometry (VSM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and BET surface area measurements. The significance of the composite structure in photocatalytic degradation was spectrophotometrically tested by blending the obtained powders with wastewater containing methylene blue under solar irradiation. The appropriate dosage of APS to link the Fe3O4@TiO2 core/shell onto GO and RGO surfaces was determined to be 1 ml per gram of FT. The kinetic studies were performed to investigate the effects of different parameters, such as composition structure, APS dosage, and repeatability. Kinetic data are well fitted by a first-order model with a high correlation coefficient. Regardless of the prominent advantage of composites in magnetic powder separation, the Fe3O4@TiO2 core/shell linked to graphene oxide is an efficient composite in comparison to FTRGO for the dye degradation without losing the original activity and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiva Salem.

Additional information

Responsible editor: Suresh Pillai

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazari, Y., Salem, S. Efficient photocatalytic methylene blue degradation by Fe3O4@TiO2 core/shell linked to graphene by aminopropyltrimethoxysilane. Environ Sci Pollut Res 26, 25359–25371 (2019). https://doi.org/10.1007/s11356-019-05740-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05740-8

Keywords

Navigation