Skip to main content

Advertisement

Log in

Polyamines modulate growth, antioxidant activity, and genomic DNA in heavy metal–stressed wheat plant

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A pot experiment was performed to assess the useful effects of seed soaking or seedling foliar spray using 0.25 mM spermine (Spm), 0.50 mM spermidine (Spd), or 1 mM putrescine (Put) on heavy metal tolerance in wheat plants irrigated with water contaminated by cadmium (2 mM Cd2+ in CdCl2) or lead (2 mM Pb2+ in PbCl2). Cd2+ or Pb2+ presence in the growth medium resulted in significant reductions in growth and yield characteristics and activities of leaf peroxidase (POD), glutathione reductase (GR), ascorbic acid oxidase (AAO), and polyphenol oxidase (PPO) of wheat plants. In contrast, significant increases were observed for Cd2+ content in roots, leaves and grains, superoxide dismutase (SOD) and catalase (CAT) activities, radical scavenging activity (DPPH), reducing power capacity, and fragmentation in DNA in comparison to controls (without Cd2+ or Pb2+ addition). However, treating the Cd2+- or Pb2+-stressed wheat plants with Spm, Spd, or Put, either by seed soaking or foliar spray, significantly improved growth and yield characteristics and activities of POD, GR, AAO, PPO, SOD, and CAT, DPPH, and reducing power capacity in wheat plants. In contrast, Cd2+ levels in roots, leaves, and yielded grains, and fragmentation in DNA were significantly reduced compared with the stressed (with Cd2+ or Pb2+) controls. Generally, seed soaking treatments were more effective than foliar spray treatments. More specifically, seed priming in Put was the best treatment under heavy metal stress. Results of this study recommend using polyamines, especially Put, as seed soaking to relieve the adverse effects of heavy metals in wheat plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aldesuquy HS (2016) Polyamines in relation to metal concentration, distribution, relative water content and abscisic acid in wheat plants irrigated with waste water heavily polluted with heavy metals. Intl J Bioassays 5(5):4534–4546

    Article  CAS  Google Scholar 

  • Aldesuquy HS, Samia H, Samy A, Abdel-Whab E (2014) Involvement of spermine and spermidine in the control of productivity and biochemical aspects of yielded grains of wheat plants irrigated with waste water. Egypt J Basic Appl Sci 1:16–28

    Article  Google Scholar 

  • Ali AMA, El-Nour MEM, Yagi SM (2018) Total phenolic and flavonoid contents and antioxidant activity of ginger (Zingiber officinale Rosc.) rhizome, callus and callus treated with some elicitors. J Genet Engin Biotechnol 16:677–682 In Press

    Article  Google Scholar 

  • Alscher PG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plant. J Exp Bot 53:1331–1341

    Article  CAS  Google Scholar 

  • Alsokari SS, Aldesuquy HS (2011) Synergistic effect of polyamines and waste water on leaf turgidity, heavy metals accumulation in relation to grain yield. J Appl Sci Res 7(3):376–384

    CAS  Google Scholar 

  • Alzahrani Y, Kuşvuran A, Alharby HF, Kuşvuran S, Rady MM (2018) The defensive role of silicon in wheat against stress conditions induced by drought, salinity or cadmium. Ecotoxicol Environ Saf 154:187–196

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism oxidatives and signal transduction. Annu Rev Plant Physiol Plant Mol Biol 55:373–399

    Article  CAS  Google Scholar 

  • Bashmakov DI, Lukatkin AS, Revin VV, Duchovskis P, Brazaityte A, Baranauskis K (2005) Growth of maize seedlings affected by different concentrations of heavy metals. Ekologija 3:22–27

    Google Scholar 

  • Bashri G, Prasad SM (2015) Indole acetic acid modulates changes in growth, chlorophyll a fluorescence and antioxidant potential of Trigonella foenum-graecum L. grown under cadmium stress. Acta Physiol Plant 37:1745

    Article  CAS  Google Scholar 

  • Beer RF, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133

    Google Scholar 

  • Besford RT, Richardson CM, Campos JL, Tiburcio AF (1993) Effect of polyamines on stabilization of molecular complexes of thylakoid membranes of osmotically stressed oat leaves. Planta 189:201–206

    Article  CAS  Google Scholar 

  • Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. Leben smittel Wissenschaften und Technologi 28:25–30

    Article  CAS  Google Scholar 

  • Cakmak I, Marshner H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves. Plant Physiol 98:1222–1227

    Article  CAS  Google Scholar 

  • Chaves MS, Martinelli JA, Wesp-Guterres C, Graichen FAS, Brammer S, Scagliusi SM, Da Silva PR, Wiethölter P, Torres GAM, Lau EY, Consoli L, Chaves ALS (2013) The importance for food security of maintaining rust resistance in wheat. Food Sec 5:157–176

    Article  Google Scholar 

  • Chen D, Shao Q, Yin L, Younis A, Zheng B (2019) Polyamine function in plants: metabolism, regulation on development, and roles in abiotic stress responses. A Review Front Plant Sci 9:1945. https://doi.org/10.3389/fpls.2018.01945

    Article  Google Scholar 

  • Chmielowska-Bak J, Lefèvre I, Lutts S, Deckert J (2013) Short term signaling responses in roots of young soybean seedlings exposed to cadmium stress. J Plant Physiol 170:1585–1594

    Article  CAS  Google Scholar 

  • Choudhury S, Panda SK (2004) Role of salicylic in regulating cadmium induced oxidative stress in Oryza sativa roots. Bulg J Plant Physiol 30:95–110

    CAS  Google Scholar 

  • Clemens S, Antosiewicz DM, Ward JM, Schachtman DP, Schroeder JI (1998) The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast. Proc Natl Acad Sci U S A 95:12043–12048

    Article  CAS  Google Scholar 

  • Cohen SS (1998) A guide to the polyamines. Oxford University Press, New York, NY

    Google Scholar 

  • Cvikrova M, Binarova P, Cenklova V, Edera J, Machackova I (1999) Reinitiation of cell division and polyamine and aromatic monoamine levels in alfalfa explants during the induction of somatic embryogenesis. Physiol Plant 105:330–337

    Article  CAS  Google Scholar 

  • D’Agostino L, Di-Pietro M, Di-Luccia A (2005) Nuclear aggregates of polyamines are supra molecular structures that play a crucial role in genomic DNA protection and conformation. FEBS J 272:3777–3787

    Article  CAS  Google Scholar 

  • Dawson CR, Magee RJ (1955) Ascorbic acid oxidase. In: Colowich SP (ed) Methods in enzymology. Vol. Academic, New York, pp 831–835

    Chapter  Google Scholar 

  • Desoky EM, Elrys AS, Rady MM (2019) Integrative Moringa and licorice extracts application improves Capsicum annuum fruit yield and declines its contaminant contents on a heavy metals contaminated saline soil. Ecotoxicol Environ Saf 169:50–60

    Article  CAS  Google Scholar 

  • Drolet G, Dumbroff EB, Legg R, Thompson JE (1986) Radical scavenging properties of polyamines. Phytochem 25:367–371

    Article  CAS  Google Scholar 

  • Dudjak J, Lachman J, Miholová D, Kolihová D, Pivec V (2004) Effect of cadmium on polyphenol content in young barley plants (Hordeum vulgare L.). Plant Soil Environ 50:471–477

    Article  CAS  Google Scholar 

  • Duh PD (1998) Antioxidant activity of burdock (Arctium lappa Linne): its scavenging effect on free radical and active oxygen. J Amer Oil Chem Soc 75:455–461

    Article  CAS  Google Scholar 

  • Duh P, Du P, Yen G (1999) Action of methanolic extract of mung bean hull as inhibitors of lipid peroxidation and non-lipid oxidative damage. Food Chem Toxicol 37:1055–1061

    Article  CAS  Google Scholar 

  • Farooq M, Basra SMA, Rehman H, Hussain M (2008) Seed priming with polyamines improves the germination and early seedling growth in fine rice. J New Seeds 9:145–155

    Article  Google Scholar 

  • Ferreira RR, Fornazier RF, Vitoria AP, Lea PJ, Azevedo RA (2002) Changes in antioxidant enzyme activities in soybean under cadmium stress. J Plant Nutr 25:327–342

    Article  CAS  Google Scholar 

  • Finatto T, Costa de Oliveira A, Chaparro C, da Maia LC, Farias DR, Woyann LG, Mistura CC, Soares-Bresolin AP, Liauro C, Panaud O, Picault N (2015) A biotic stress and genome dynamics: specific genes and transposable elements response to iron excess in rice. Rice 8:13

    Article  Google Scholar 

  • Frugier M, Florentz C, Hosseini MW, Lehn JM, Giegé R (1994) Synthetic polyamines stimulate in vitro transcription by T7 RNA polymerase. Nucleic Acids Res 22(14):2784–2790

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Polyamines and abiotic stress tolerance in plants. Plant Signal Behav 5:26–33

    Article  CAS  Google Scholar 

  • Groppa MD, Benavides MP (2008) Polyamines and a biotic stress: recent advances. Amino Acids 1:35–45

    Article  CAS  Google Scholar 

  • Groppa MD, Tomaro ML, Benavides MP (2001) Polyamines as protectors against cadmium or copper-induced oxidative damage in sunflower leaf discs. Plant Sci 161:481–488

    Article  CAS  Google Scholar 

  • Groppa MD, Ianuzzo MP, Tomaro ML, Benavides MP (2007) Polyamine metabolism in sunflower plants under long-term cadmium or copper stress. Amino Acids 32:265–275

    Article  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture for growing plants without soil. Cal Agric Exp Sta Cir 347:1–32

    Google Scholar 

  • Howladar SM (2014) A novel Moringa oleifera leaf extract can mitigate the stress effects of salinity and cadmium in bean (Phaseolus vulgaris L.) plants. Ecotoxicol Environ Saf 100:69–75

    Article  CAS  Google Scholar 

  • Jili K, ZhiJun Z, Liu Y (2009) Effects of lead (Pb) stress on seed germination and seedling growth of wheat. Guangxi Acad Agric Sci 40(2):144–146

    Google Scholar 

  • Kaur G, Singh HP, Batish DR, Kohli RK (2012) Growth, photosynthetic activity and oxidative stress in wheat (Triticum aestivum) after exposure of lead Pb to soil. J Environ Biol 33:265–269

    CAS  Google Scholar 

  • Khan AU, Di-Mascio P, Medeiros MHG, Wilson T (1992) Spermine and spermidine protection of plasmid DNA against single-strand breaks induced by singlet oxygen. Proc Natl Acad Sci U S A 89:11428–11430

    Article  CAS  Google Scholar 

  • Kopittke PM, Pax F, Blamey C, Colin J, Neal A, Menzies W (2010) Trace metal phytotoxicity in solution culture: a review. J Exp Bot 61:945–954

    Article  CAS  Google Scholar 

  • Kumar M (2013) Crop plants and abiotic stresses. Biomol Res Ther 3:e125

    Google Scholar 

  • Kurepa J, Smalle J, Vanmontagu M, Inze D (1998) Polyamines and paraquat toxicity in Arabidopsis thaliana. Plant Cell Physiol 39:987–992

    Article  CAS  Google Scholar 

  • Lamhamdi M, El Galiou O, Bakrim A, Novoa-Munoz JC, Arias-Estevez M, Aarab A, Lafont R (2013) Effect of lead stress on mineral content and growth of wheat (Triticum aestivum) and spinach (Spinacia oleracea) seedlings. Saudi J Biol Sci 20(1):29–36

    Article  CAS  Google Scholar 

  • Lewis MA (1995) Use of freshwater plants for phytotoxicity testing: a review. Environ Pollut 87(3):319–336

    Article  CAS  Google Scholar 

  • Li CL, Xu HM, Xu J, Chun XY, Ni DJ (2011) Effects of aluminum on ultrastructure and antioxidant activity in leaves of tea plant. Acta Physiol Plant 33:973–978

    Article  CAS  Google Scholar 

  • Liu JH, Kitashiba H, Wang J, Ban Y, Moriguchi T (2007) Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotechnol 24:117–126

    Article  CAS  Google Scholar 

  • Lovaas E (1997) Antioxidant and metal-chelating effects of polyamines. In: Sies, H. (Ed.). Advances in pharmacology. Antioxidants in disease mechanisms and therapy. Acad Press, 38:119–149

  • Maehly AC, Chance BC (1954) The assay of catalases and peroxidases. In: Glick D (ed) Methods of biochemical analysis, vol 1. Intersci Publish, New York

    Google Scholar 

  • Majer BJ, Tscherko D, Paschke A (2002) Effects of heavy metal contamination of soils on micronucleus induction in Tradescantia and on microbial enzyme activities: a comparative investigation. Mutat Res 515:111–124

    Article  CAS  Google Scholar 

  • Mandal C, Ghosh N, Maiti S, Das K, Gupta S, Dey N, Adak MK (2013) Antioxidative responses of Salvinia (Salvinia natans Linn.) to aluminium stress and it’s modulation by polyamine. Physiol Mol Biol Plants 19:91–103

    Article  CAS  Google Scholar 

  • Mandal C, Ghosh N, Dey N, Adak MK (2014) Effects of putrescine on oxidative stress induced by hydrogen peroxide in Salvinia natans L. J Plant Interact 9(1):550–558

    Article  CAS  Google Scholar 

  • Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Environ Stud 15(4):523–530

    CAS  Google Scholar 

  • Moschou PN, Wu J, Cona A, Tavladoraki P, Angelini R, Roubelakis Angelakis KA (2012) The polyamines and their catabolic products are significant players in the turnover of nitrogenous molecules in plants. J Exp Bot 63:5003–5015

    Article  CAS  Google Scholar 

  • Nazar R, Iqbal N, Masood A, Khan M, Syeed S, Khan N (2012) Cadmium toxicity in plants and role of mineral nutrients in its alleviation. Amer J Plant Sci 3:1476–1489

    Article  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  Google Scholar 

  • Oyaizu M (1986) Studies on the product of browning reaction prepared from glucosamine. Jpn J Nutr 44:307–315

    Article  CAS  Google Scholar 

  • Pál M, Csávás G, Szalai G, Tímea O, Khalil R, Yordanova R, Gell G, Birinyi Z, Németh E, Janda T (2017) Polyamines may influence phytochelatin synthesis during cd stress in rice. J Hazard Mater 340:272–280

    Article  CAS  Google Scholar 

  • Poduslo JF, Curran GL (1996) Increased permeability of superoxide dismutase at the blood-nerve and blood-brain barriers with retained enzymatic activity after modification with naturally occurring polyamine, putrescine. J Neurochem 67:734–741

    Article  CAS  Google Scholar 

  • Porebski S, Bailey LG, Baum BR (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Report 15:8–15

    Article  CAS  Google Scholar 

  • Pottosin I, Velarde-Buendía AM, Bose J, Zepeda-Jazo I, Shabala S, Dobrovinskaya O (2014) Cross-talk between reactive oxygen species and polyamines in regulation of ion transport across the plasma membrane: implications for plant adaptive responses. J Exp Bot 65:1271–1283

    Article  CAS  Google Scholar 

  • Quartacci MF, Cosi E, Navari-Izzo F (2001) Lipids and NADPH-dependent superoxide production in plasma membrane vesicles from roots of wheat grown under copper deficiency or excess. J Exp Bot 52:77–84

    CAS  Google Scholar 

  • Rady MM, Hemida KA (2015) Modulation of cadmium toxicity and enhancing cadmium-tolerance in wheat seedlings by exogenous application of polyamines. Ecotoxicol Environ Saf 119:178–185

    Article  CAS  Google Scholar 

  • Rady MM, Seif El-Yazal MA, Taie HAA, Ahmed SMA (2016a) Response of wheat growth and productivity to exogenous polyamines under lead stress. J Crop Sci Biotechnol 19(5):363–371

    Article  Google Scholar 

  • Rady MM, Seif El-Yazal MA, Taie HAA, Ahmed SMA (2016b) Response of Triticum aestivum (L.) plants grown under cadmium stress to polyamines pretreatments. Plant 4(5):29–36

    Article  Google Scholar 

  • Rady MM, Elrys AS, Abo El-Maati MF, Desoky EM (2019a) Interplaying roles of silicon and proline effectively improve salt and cadmium stress tolerance in Phaseolus vulgaris plant. Plant Physiol Biochem 139:558–568

    Article  CAS  Google Scholar 

  • Rady MM, Kuşvuran A, Alharby HF, Alzahrani Y, Kuşvuran S (2019b) Pretreatment with proline or an organic bio-stimulant induces salt tolerance in wheat plants by improving antioxidant redox state and enzymatic activities and reducing the oxidative stress. J Plant Growth Regul https://doi.org/10.1007/s00344-018-9860-5

  • Schaedle M, Bassham JA (1977) Chloroplast glutathione reductase. Plant Physiol 59:1011–1012

    Article  CAS  Google Scholar 

  • Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    CAS  Google Scholar 

  • Scoccianti V, Iacobucci M, Speranza A, Antognoni F (2013) Over accumulation of putrescine induced by cyclo hexylamine interferes with chromium accumulation and partially restores pollen tube growth in Actinidiadeliciosa. Plant Physiol Biochem 70:424–432

    Article  CAS  Google Scholar 

  • Semida WM, Rady MM, Abd El-Mageed TA, Howladar SM, Abdelhamid MT (2015) Alleviation of cadmium toxicity in common bean (Phaseolus vulgaris L.) plants by the exogenous application of salicylic acid. J Hortic Sci Biotechnol 90:83–91

    Article  CAS  Google Scholar 

  • Semida WM, Hemida KA, Rady MM (2018) Sequenced ascorbate-proline-glutathione seed treatment elevates cadmium tolerance in cucumber transplants. Ecotoxicol Environ Saf 154:171–179

    Article  CAS  Google Scholar 

  • Shevyakova NI, Il’ina EN, Stetsenko LA, Kuznetsov VIV (2010) Nickel accumulation in rape shoots (Brassica Napus L.) increased by putrescine. Int J Phytoremed 13(4):345–356

    Article  CAS  Google Scholar 

  • Singh Y, Malik CP (2011) Phenols and their antioxidant activity in Brassica juncea seedlings growing under HgCl2 stress. J Microbiol Biotech Res 1(4):124–130

    CAS  Google Scholar 

  • Taneja SR, Sachar RC (1974) Introduction of polyphenol oxidase in germinating wheat seeds. Phytochem 13:2695–2702

    Article  CAS  Google Scholar 

  • Taylor RSL, Hudson JB, Manandhar NP, Towers GHN (1996) Antiviral activities of medicinal plants of southern Nepal. J Ethnopharmacol 53:97–104

    Article  CAS  Google Scholar 

  • Tiburcio AF, Kaur-Sawhney R, Galston AW (1990) Polyamine metabolism. In: Intermedatory nitrogen metabolism. 16, the biochemistry of plants. Miflin, B.J., Lea, P.J. (Ed). Academic Press, pp. 283–325

  • Tiburcio AF, Altabella T, Masgrau C (2002) Polyamines. In: Bisseling T, Schell J (eds) New developments in plant hormone research. Springer-Verlag, New York

    Google Scholar 

  • Velarde-Buendía AM, Shabala S, Cvikrova M, Dobrovinskaya O, Pottosin I (2012) Salt-sensitive and salt-tolerant barley varieties differ in the extent of potentiation of the ROS-induced K+ efflux by polyamines. Plant Physiol Biochem 61:18–23

    Article  CAS  Google Scholar 

  • Voronova A, Belevich V, Jansons A, Rungis D (2014) Stress-induced transcriptional activation of retro transpos on-like sequences in the Scots pine (Pinus sylvestris L.) genome. Tree Genet Genomes 10:937–951

    Article  Google Scholar 

  • Walden R, Alexandra C, Tiburcio AF (1997) Polyamines: small molecules triggering pathways in plant growth and development. Plant Physiol 113:1009–1013

    Article  CAS  Google Scholar 

  • Wu J-W, Shi Y, Zhu Y-X, Wang Y-C, Gong H-J (2013) Mechanisms of enhanced heavy metal tolerance in plants by silicon: a review. Pedosphere 23(6):815–825

    Article  CAS  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179

    Article  CAS  Google Scholar 

  • Yin LM (1994) Effects of polyamines and kinetin on in vitro frond senescence in Lemna aequinoctialis. Acta Bot Sin 36:522–527 in Chinese with an English abstract

    CAS  Google Scholar 

  • Zhao H, Yang H (2008) Exogenous polyamines alleviate the lipid peroxidation induced by cadmium chloride stress in Malus hupehensis. Rehd Sci Hortic 116:442–447

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa M. Rady.

Additional information

Responsible editor: Gangrong Shi

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taie, H.A.A., Seif El-Yazal, M.A., Ahmed, S.M.A. et al. Polyamines modulate growth, antioxidant activity, and genomic DNA in heavy metal–stressed wheat plant. Environ Sci Pollut Res 26, 22338–22350 (2019). https://doi.org/10.1007/s11356-019-05555-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05555-7

Keywords

Navigation