Skip to main content

Advertisement

Log in

Halotolerant plant-growth promoting rhizobacteria modulate gene expression and osmolyte production to improve salinity tolerance and growth in Capsicum annum L.

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Some rhizobacteria have demonstrated a noteworthy role in regulation of plant growth and biomass production under biotic and abiotic stresses. The present study was intended to explicate the ameliorative consequences of halotolerant plant growth-promoting rhizobacteria (HPGPR) on growth of capsicum plants subjected to salt stress. Salt stress was ascertained by supplementing 1 and 2 g NaCl kg−1 soil. The HPGPR positively invigorated growth attributes, chlorophyll, protein contents, and water use efficiency (WUE) of supplemented capsicum plants under salinity stress conditions. Bacillus fortis strain SSB21 caused highest significant increase in shoot length, root length, and fresh and dry biomass production of capsicum plants grown under saline conditions. This multi-trait bacterium also increased biosynthesis of proline and up-regulated the expression profiles of stress related genes including CAPIP2, CaKR1, CaOSM1, and CAChi2. On the other hand, B. fortis strain SSB21 inoculated plants exhibited reduced level of ethylene, lipid peroxidation, and reactive oxygen species (ROS). All these together contribute to activate physiological and biochemical processes involved in the mitigation of the salinity induced stress in capsicum plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agami RA, Medani RA, Abd El-Mola IA, Taha RS (2016) Exogenous application with plant growth promoting rhizobacteria (PGPR) or proline induces stress tolerance in basil plants (Ocimum basilicum L.) exposed to water stress. Int J Environ Agric Res 2(5):1–15

    Google Scholar 

  • Ahmad M, Zahir ZA, Nazli F, Akram F, Arshad M, Khalid M (2013) Effectiveness of halo-tolerant, auxin producing Pseudomonas and rhizobium strains to improve osmotic stress tolerance in mung bean (Vigna radiata L.). Braz J Microbiol 44(4):1341–1348

    Article  Google Scholar 

  • Ali SKZ, Sandhya V, Rao LV (2014) Isolation and characterization of drought-tolerant ACC deaminase and exopolysaccharide-producing fluorescent Pseudomonas sp. Ann Microbiol 64:493–502

    Article  CAS  Google Scholar 

  • Al-Omran AM, Al-Harbi AR, Wahb-Allah MA, Nadeem M, Eleter A (2012) Management of irrigation water salinity in green house tomato production under calcareous sandy soil and drip irrigation. J Agric Sci Technol 14:939–950

    Google Scholar 

  • Anil-Kumar S, Hima-Kumari P, Shravan-Kumar G, Mohanalatha C, Kavi-Kishor PB (2015) Osmotin: a plant sentinel and a possible agonist of mammalian adiponectin. Front Plant Sci 6:163. https://doi.org/10.3389/fpls.2015.00163

    Article  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15. https://doi.org/10.1104/pp.24.1.

    Article  CAS  Google Scholar 

  • Ashraf M, Hasnain S, Berge O, Mahmood T (2004) Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol Fertil Soils 40:157–162

    CAS  Google Scholar 

  • Aslam H, Ahmad SR, Anjum T, Akram W (2017) Native halo-tolerant plant growth promoting bacterial strains can ameliorate salinity stress on tomato plants under field conditions. Int J Agric Biol 22(4):445–459. https://doi.org/10.17957/IJAB/15.0491

    Article  Google Scholar 

  • Barnawal D, Bharti N, Maji D, Chanotiya CS, Kalra A (2014) ACC deaminase-containing Arthrobacter protophormiae induces NaCl stress tolerance through reduced ACC oxidase activity and ethylene production resulting in improved nodulation and mycorrhization in Pisum sativum. J Plant Physiol 171:884–894. https://doi.org/10.1016/j.jplph.2014.03.007

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bestwick CS, Brown IR, Bennett MH, Mansfield JW (1997) Localization of hydrogen peroxide accumulation during the hypersensitive reaction of lettuce cells to Pseudomonas syringae pv phaseolicola. Plant Cell 9(2):209–221

    Article  CAS  Google Scholar 

  • Bharti N, Pandey SS, Barnawal D, Patel VK, Kalra A (2016) Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci Rep 6:34768. https://doi.org/10.1038/srep34768

    Article  CAS  Google Scholar 

  • Charu L, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62(14):4731–4748

    Article  CAS  Google Scholar 

  • Chedlia BA, Bechi BR, Boukhris M (2007) Effect of water deficit on olive trees cv. Chemlali under field conditions in arid region in Tunisia. Sci Hortic 113:267–277. https://doi.org/10.1016/j.scienta.2007.03.020

    Article  Google Scholar 

  • Chen L, Liu Y, Wu G, Veronican Njeri K, Shen Q, Zhang N, Zhang R (2016) Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9. Physiol Plant 158:34–44. https://doi.org/10.1111/ppl.12441

    Article  CAS  Google Scholar 

  • Choi HW, Hwang BK (2015) Molecular and cellular control of cell death and defense signaling in pepper. Planta 241(1):1–27

    Article  CAS  Google Scholar 

  • Choi DS, Hong JK, Hwang BK (2013) Pepper osmotin-like protein 1 (CaOSM1) is an essential component for defense response, cell death, and oxidative burst in plants. Planta 238(6):1113–1124

    Article  CAS  Google Scholar 

  • Cohen AC, Bottini R, Pontin M, Berli FJ, Moreno D, Boccanlandro H, Travaglia CN, Piccoli PN (2015) Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels. Physiol Plant 153:79–90

    Article  CAS  Google Scholar 

  • Dangl JL, Dietrich RA, Richberg MH (1996) Death don’t have no mercy: cell death programs in plant–microbe interactions. Plant Cell 8(10):1793–1807

    Article  CAS  Google Scholar 

  • Fahad S, Hussain S, Matloob A, Khan FA, Khaliq A, Saud S, Hassan S, Shan D, Khan F, Ullah N, Faiq M, Khan MR, Tareen AK, Khan A, Ullah A, Ullah N, Huang J (2015) Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul 75:391–404. https://doi.org/10.1007/s10725-014-0013-y

    Article  CAS  Google Scholar 

  • Gharsallah C, Fakhfakh H, Grubb D, Gorsane F (2016) Effect of salt stress on ion concentration, proline content, antioxidant enzyme activities and gene expression in tomato cultivars. AoB Plants 8:55. https://doi.org/10.1093/aobpla/plw055

    Article  CAS  Google Scholar 

  • Günes A, Turan M, Güllüce M, Sahin F (2014) Nutritional content analysis of plant growth-promoting rhizobacteria species. Eur J Soil Biol 60:88–97. https://doi.org/10.1016/j.ejsobi.2013.10.010

    Article  CAS  Google Scholar 

  • Guo J, Chen L, Liu X, Gao Y, Zhang D, Yang L (2012) A multiplex degenerate PCR analytical approach targeting to eight genes for screening GMOs. Food Chem 132:1566–1573. https://doi.org/10.1016/j.foodchem.2011.11.096

    Article  CAS  Google Scholar 

  • Habib SH, Kausar H, Saud HM (2016) Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes. Biomed Res Int 2016:6284547. https://doi.org/10.1155/2016/6284547

    Article  CAS  Google Scholar 

  • Hahm MS, Son JS, Hwang YJ, Kwon DK, Ghim SY (2017) Alleviation of salt stress in pepper (Capsicum annum L.) plants by plant growth-promoting rhizobacteria. J Microbiol Biotechnol 27(10):1790–1797. https://doi.org/10.4014/jmb.1609.09042

    Article  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7(11):1456–1466

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplast, kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  Google Scholar 

  • Holiday ER, Preedy JR (1953) The precision of a direct-reading flame photometer for the determination of sodium and potassium in biological fluids. Biochem J 55(2):214–220

    Article  CAS  Google Scholar 

  • Holmström KO, Somersalo S, Mandal A, Palva TE, Welin B (2000) Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. J Exp Bot 51(343):177–185

    Article  Google Scholar 

  • Hong JK, Hwang BK (2006) Promoter activation of pepper class II basic chitinase gene, CAChi2, and enhanced bacterial disease resistance and osmotic stress tolerance in the CAChi2 overexpressing Arabidopsis. Planta 223(3):433–448

    Article  CAS  Google Scholar 

  • Hong JK, Jung HW, Lee BK, Lee SC, Lee YK, Hwang BK (2004) An osmotin-like protein gene, CAOSM1, from pepper: differential expression and in situ localization of its mRNA during pathogen infection and abiotic stress. Physiol Mol Plant Pathol 64(6):301–310

    Article  CAS  Google Scholar 

  • Honma M, Shimomura T (1978) Metabolism of 1-aminocyclopropane-1carboxylicacid. Agric Biol Chem 42:1825–1831. https://doi.org/10.1271/bbb1961.42.1825

    Article  CAS  Google Scholar 

  • Hoque MA, Banu MNA, Okuma E, Amako K, Nakamura K, Shimoishi Y, Murata Y (2007) Exogenous proline and glycinebetaine increase NaCl-induced ascorbate-glutathione cycle enzyme activities, and proline improves salt tolerance more than glycinebetaine in tobacco bright Yellow-2 suspension-cultured cells. J Plant Physiol 164:1457–1468

    Article  CAS  Google Scholar 

  • Huang B, DaCosta M, Jiang Y (2014) Research advances in mechanisms of grass tolerance to abiotic stress from physiology to molecular biology. Crit Rev Plant Sci 33:141–189. https://doi.org/10.1080/07352689.2014.870411

    Article  CAS  Google Scholar 

  • Ilangumaran G, Smith DL (2017) Plant growth promoting rhizobacteria in amelioration of salinity stress: a systems biology perspective. Front Plant Sci 8:1768. https://doi.org/10.3389/fpls.2017.01768

    Article  Google Scholar 

  • Ishitani M, Xiong L, Lee H, Stevenson B, Zhu JK (1998) HOS1, a genetic locus involved in cold-responsive gene expression in Arabidopsis. Plant Cell 10(7):1151–1161

    Article  CAS  Google Scholar 

  • Jacoby RP, Che-Othman MH, Millar AH, Taylor NL (2016) Analysis of the sodium chloride-dependent respiratory kinetics of wheat mitochondria reveals differential effects on phosphorylating and non-phosphorylating electron transport pathways. Plant Cell Environ 39:823–833. https://doi.org/10.1111/pce.12653

    Article  CAS  Google Scholar 

  • Jan JY, Kim DG, Kim YO, Kim JS, Kang H (2004) An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana. Plant Mol Biol 54(5):713–725

    Article  Google Scholar 

  • Jeschke WD, Wolf O (1988) External potassium supply is not required for root growth in saline conditions: experiments with Ricinus communis L. grown in a reciprocal split-root system. J Exp Bot 39:1149–1167. https://doi.org/10.1093/jxb/39.9.1149

    Article  CAS  Google Scholar 

  • Khan WU, Ahmad SR, Yasin NA, Ali A, Ahmad A, Akram W (2017a) Application of Bacillus megaterium MCR-8 improved phytoextraction and stress alleviation of nickel in Vinca rosea. Int J Phytorem 19(9):813–824. https://doi.org/10.1080/15226514.2017.1290580

    Article  CAS  Google Scholar 

  • Khan WU, Yasin NA, Ahmad SR, Ali A, Ahmad A, Akram W, Faisal M (2017b) Effect of Burkholderia cepacia CS8 on Cd-stress alleviation and phytoremediation by Catharanthus roseus. Int J Phytorem (Accepted)

  • Kim K, Jang YJ, Lee SM, Oh BT, Chae JC, Lee KJ (2014) Alleviation of salt stress by Enterobacter sp. EJ01 in tomato and Arabidopsis is accompanied by up-regulation of conserved salinity responsive factors in plants. Mol Cells 37:109–117. https://doi.org/10.14348/molcells.2014.2239

    Article  CAS  Google Scholar 

  • Kim J, Liu Y, Zhang X, Zhao B, Childs K (2016) Analysis of salt-induced physiological and proline changes in 46 switch grass (Panicum virgatum) lines indicates multiple responses modes. Plant Physiol Biochem 105:203–212. https://doi.org/10.1016/j.plaphy.2016.04.020

    Article  CAS  Google Scholar 

  • Koyama ML, Levesley A, Koebner RM, Flowers TJ, Yeo AR (2001) Quantitative trait loci for component physiological traits determining salt tolerance in rice. Plant Physiol 125(1):406–422

    Article  CAS  Google Scholar 

  • Lee SC, Kim SH, An SH, Yi SY, Hwang BK (2006) Identification and functional expression of the pepper pathogen-induced gene, CAPIP2, involved in disease resistance and drought and salt stress tolerance. Plant Mol Biol 62(1–2):151–164

    Article  CAS  Google Scholar 

  • Liu X, Chen X, Li R, Long F, Zhang L, Zhang Q, Li J (2017) Water-use efficiency of an old-growth forest in lower subtropical China. Sci Rep 7:42761. https://doi.org/10.1038/srep42761

    Article  CAS  Google Scholar 

  • Loreto F, Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol 127:1781–1787

    Article  CAS  Google Scholar 

  • Mahmood S, Daur I, Al-Solaimani SG, Ahmad S et al (2016) Plant growth promoting rhizobacteria and silicon synergistically enhance salinity tolerance of mung bean. Front Plant Sci 7:876. https://doi.org/10.3389/fpls.2016.00876

    Article  Google Scholar 

  • Marco F, Bitrián M, Carrasco P, Rajam MV, Alcázar R, Antonio FT (2015) Genetic engineering strategies for abiotic stress tolerance in plants. Plant Biol Biotechnol 2:579–610

    Article  Google Scholar 

  • Martínez-Alcántara B, Martínez-Cuenca MR, Quiñones A, Iglesias DJ, Primo-Millo E, Forner-Giner MA (2015) Comparative expression of candidate genes involved in sodium transport and compartmentation in citrus. Environ Exp Bot 111:52–62

    Article  CAS  Google Scholar 

  • Maurya VK, Srinivasan R, Nalini E, Ramesh N, Gothandam KM (2014) Analysis of stress responsive genes in capsicum for salinity responses. Ann Res Rev Biol 6(1):66–78

    Article  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  Google Scholar 

  • Nautiyal CS, Srivastava S, Chauhan PS, Seem K, Mishra A, Sopory SK (2013) Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol Biochem 66:1–9. https://doi.org/10.1016/j.plaphy.2013.01.020

    Article  CAS  Google Scholar 

  • Niu SQ, Li HR, Pare PW, Aziz M, Wang SM, Shi HZ et al (2016) Induced growth promotion and higher salt tolerance in the halophyte grass Puccinellia tenuiflora by beneficial rhizobacteria. Plant Soil 407:217–230. https://doi.org/10.1007/s11104-015-2767-z

    Article  CAS  Google Scholar 

  • Panwar M, Tewari R, Gulati A, Nayyar H (2016) Indigenous salt-tolerant rhizobacterium Pantoea dispersa (PSB3) reduces sodium uptake and mitigates the effects of salt stress on growth and yield of chickpea. Acta Physiol Plant 38:278. https://doi.org/10.1007/s11738-016-2284-6

    Article  CAS  Google Scholar 

  • Patten CL, Glick BR (2002) Regulation of indoleacetic acid production in Pseudomonas putida GR12-2 by ophan and the stationary-phase sigma factor RpoS. Can J Microbiol 48:635–642

    Article  CAS  Google Scholar 

  • Piao HL, Lim JH, Kim SJ, Cheong GW, Hwang I (2001) Constitutive over-expression of AtGSK1 induces NaCl stress responses in the absence of NaCl stress and results in enhanced NaCl tolerance in Arabidopsis. Plant J 27:305–314

    Article  CAS  Google Scholar 

  • Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17:362–370

    CAS  Google Scholar 

  • Pottosin I, Velarde-Buendía AM, Bose J, Zepeda-Jazo I, Shabala S, Dobrovinskaya O (2014) Cross-talk between reactive oxygen species and polyamines in regulation of ion transport across the plasma membrane: implications for plant adaptive responses. J Exp Bot 65(5):1271–1283. https://doi.org/10.1093/jxb/ert423

    Article  CAS  Google Scholar 

  • Rojas-Tapias D, Moreno-Galvan A, Pardo-Diaz S, Obando M, Rivera D, Bonilla R (2012) Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Appl Soil Eco 61:264–272

    Article  Google Scholar 

  • Salzman RA, Tikhonova I, Bordelon BP, Hasegawa PM, Bressan RA (1998) Coordinate accumulation of antifungal proteins and hexoses constitutes a developmentally controlled defense response during fruit ripening in grape. Plant Physiol 117:465–472

    Article  CAS  Google Scholar 

  • Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual. Editor. Cold Spring Harbor Lab. Press, Plainview

    Google Scholar 

  • Samy AM, Abd-El-Azeem, Elwan MWM, Sung JK, Ok YS (2012) Alleviation of salt stress in eggplant (Solanum melongena L.) by plant-growth-promoting Rhizobacteria. Commun Soil Sci Plant Anal 43(9):1303–1315. https://doi.org/10.1080/00103624.2012.666305

    Article  CAS  Google Scholar 

  • Sapre S, Gontia-Mishra I, Tiwari S (2018) Klebsiella sp. confers enhanced tolerance to salinity and plant growth promotion in oat seedlings (Avena sativa). Microbiol Rese 206:25–32. https://doi.org/10.1016/j.micres.2017.09.009

  • Schwyn B, Neilands JB (1987) Universal chemical assay for detection and determination of siderophores. Anal Biochem 160:47–56

    Article  CAS  Google Scholar 

  • Seong ES, Cho HS, Choi D, Joung YH, Lim CK, Hur JH, Wang MH (2007) Tomato plants overexpressing CaKR1 enhanced tolerance to salt and oxidative stress. Biochem Biophys Res Commun 363(4):983–988

    Article  CAS  Google Scholar 

  • Shetty G, Hetrick D, Schwat P (1995) Effects of mycorrhizal fertilizers amendments on zinc tolerance of plants. Environ Pollut 88:308–314. https://doi.org/10.1016/0269-7491(95)93444-5

    Article  Google Scholar 

  • Singh RP, Jha PN (2016) Alleviation of salinity-induced damage on wheat plant by an ACC deaminase-producing halophilic bacterium Serratia sp SL-12 isolated from a salt lake. Symbiosis 69:101–111. https://doi.org/10.1007/s13199-016-0387-x

    Article  CAS  Google Scholar 

  • Singh RP, Jha PN (2017) The PGPR Stenotrophomonas maltophilia SBP-9 augments resistance against biotic and abiotic stress in wheat plants. Front Microbiol 8:1945. https://doi.org/10.3389/fmicb.2017.01945

    Article  Google Scholar 

  • Smart RE, Bingham GE (1974) Rapid estimates of relative water content. Plant Physiol 53(2):258–260

    Article  CAS  Google Scholar 

  • Smith DL, Gravel V, Yergeau E (2017) Editorial: signaling in the phytomicrobiome. Front Plant Sci 8:611. https://doi.org/10.3389/fpls.2017.00611

    Article  Google Scholar 

  • Szabados L, Savoure A (2009) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  CAS  Google Scholar 

  • Szafrańska K, Reiter RJ, Posmyk MM (2017) Melatonin improves the photosynthetic apparatus in pea leaves stressed by paraquat via chlorophyll breakdown regulation and its accelerated de novo synthesis. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00878

  • Taiz L, Zeiger E (2002) Plant physiology, 3rd edn. Publisher Sinauer, Sunderland

    Google Scholar 

  • Tiwari S, Lata C, Chauhan PS, Nautiyal CS (2016) Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiol Biochem 99:108–117

    Article  CAS  Google Scholar 

  • Upadhyay SK, Singh DP (2015) Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment. Plant Biol 17:288–293. https://doi.org/10.1111/plb.12173

    Article  CAS  Google Scholar 

  • Walker-Simmons MK (1987) ABA levels and sensitivity in developing wheat embryo's of sprouting resistant and susceptible cultivars. Plant Physiol 84:61–66

    Article  CAS  Google Scholar 

  • Wang QY, Dodd IC, Belimov AA, Jiang F (2016) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase growth and photosynthesis of pea plants under salt stress by limiting Na+ accumulation. Funct Plant Biol 43:161–172. https://doi.org/10.1071/Fp15200

    Article  CAS  Google Scholar 

  • Wu JJ, Wang C, Zheng LQ, Wang L, Chen Y, Whelan J, Shou H (2011) Ethylene is involved in the regulation of iron homeostasis by regulating the expression of iron-acquisition-related genes in Oryza sativa. J Exp Bot 62:667–674

    Article  CAS  Google Scholar 

  • Wu W, Zhang Q, Ervin EH, Yang Z, Zhang X (2017) Physiological mechanism of enhancing salt stress tolerance of perennial ryegrass by 24-Epibrassinolide. Front Plant Sci 19(8):1017. https://doi.org/10.3389/fpls.2017.01017

    Article  Google Scholar 

  • Yang A, Miller CT, Turcoliver LD (1996) Simulation of correlated and uncorrelated packing of random size spheres. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 53(2):1516–1524

    CAS  Google Scholar 

  • Yang AZ, Akhtar SS, Iqbal S, Amjad M, Naveed M, Zahir ZA, Jacobsen SE (2016) Enhancing salt tolerance in quinoa by halo-tolerant bacterial inoculation. Funct Plant Biol 43:632–642. https://doi.org/10.1071/Fp15265

    Article  CAS  Google Scholar 

  • Yasin NA, Khan WU, Ahmad SR, Ali A, Ahmad A, Akram W (2017a) Imperative roles of halotolerant plant growth promoting rhizobacteria and kinetin in improving salt tolerance and growth of black gram (Phaseolus mungo). Environ Sci Pollut Res 5:4491–4505

    Google Scholar 

  • Yasin NA, Zaheer MM, Khan WU, Ahmad SR, Ahmad A, Ali A, Akram W (2017b) The beneficial role of potassium in Cd-induced stress alleviation and growth improvement in Gladiolus grandiflora L. Int J Phytorem 20(3):274–283. https://doi.org/10.1080/15226514.2017.1374337

    Article  CAS  Google Scholar 

  • Yen GC, Duh PD (1994) Scavenging effect of methanolic extracts of peanut hulls on free-radical and active-oxygen species. J Agric Food Chem 42(3):629–632

    Article  CAS  Google Scholar 

  • Yu X, Li Y, Zhang C, Liu H, Liu J, Zheng W, Kang X, Leng X, Zhao K, Gu Y, Zhang X, Xiang Q, Chen Q (2014) Culturable heavy metal-resistant and plant growth promoting bacteria in V-Ti magnetite mine tailing soil from Panzhihua, China. PLoS One 9(9):e106618

    Article  CAS  Google Scholar 

  • Zerrouk IZ, Benchabane M, Khelifi L, Yokawa K, Ludwig-Muller J, Baluska F (2016) A Pseudomonas strain isolated from date-palm rhizospheres improves root growth and promotes root formation in maize exposed to salt and aluminum stress. J Plant Physiol 191:111–119. https://doi.org/10.1016/j.jplph.2015.12.009

    Article  CAS  Google Scholar 

  • Zhang P, Senge M, Dai Y (2016) Effects of salinity stress on growth, yield, fruit quality and water use efficiency of tomato under hydroponic system. Rev Agric Sci 4:46–55. https://doi.org/10.7831/ras.4.46

    Article  Google Scholar 

  • Zhou C, Ma Z, Zhu L, Xiao X, Xie Y, Zhu J, Wang J (2016) Rhizobacterial strain Bacillus megaterium BOFC15 induces cellular polyamine changes that improve plant growth and drought resistance. Int J Mol Sci 17:976. https://doi.org/10.3390/ijms17060976

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

N.A.Y. and W.U.K. conceived, designed, and conducted the experiments. W.A. and Aq.A. helped in conducting experiments and analyzed the data and results. Am.A., N.A.Y., and W.U.K. wrote the manuscript. S.R.A. monitored the experimental work and critically commented on the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Waheed Ullah Khan.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasin, N.A., Akram, W., Khan, W.U. et al. Halotolerant plant-growth promoting rhizobacteria modulate gene expression and osmolyte production to improve salinity tolerance and growth in Capsicum annum L.. Environ Sci Pollut Res 25, 23236–23250 (2018). https://doi.org/10.1007/s11356-018-2381-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2381-8

Keywords

Navigation