Skip to main content

Advertisement

Log in

Comparison of different advanced degradation processes for the removal of the pharmaceutical compounds diclofenac and carbamazepine from liquid solutions

  • New Challenges in the Application of Advanced Oxidation Processes
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Carbamazepine and diclofenac are two examples of drugs with widespread geographical and environmental media proliferation that are poorly removed by traditional wastewater treatment processes. Advanced oxidation processes (AOPs) have been proposed as alternative methods to remove these compounds in solution. AOPs are based on a wide class of powerful technologies, including UV radiation, ozone, hydrogen peroxide, Fenton process, catalytic wet peroxide oxidation, heterogeneous photocatalysis, electrochemical oxidation and their combinations, sonolysis, and microwaves applicable to both water and wastewater. Moreover, processes rely on the production of oxidizing radicals (•OH and others) in a solution to decompose present pollutants. Water radiolysis-based processes, which are an alternative to the former, involve the use of concentrated energy (beams of accelerated electrons or γ-rays) to split water molecules, generating strong oxidants and reductants (radicals) at the same time. In this paper, the degradation of carbamazepine and diclofenac by means of all these processes is discussed and compared. Energy and byproduct generation issues are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AOP:

advanced oxidation process

AORPs:

advanced oxidation–reduction processes

BCR:

biomass concentrator reactor

BDD:

boron-doped diamond

CBZ:

carbamazepine

CEC:

contaminants of emerging concern

COD:

chemical oxygen demand

DBP:

disinfection byproduct

DCF:

diclofenac

EB:

electron beam

EEO:

electrical energy per order

GAC:

granular activated carbon

LC/MS:

liquid chromatography with mass spectrometry detection

MBR:

membrane biological reactor

NOM:

natural organic matter

4′-OHD:

4′-hydroxy diclofenac

5-OHD:

5-hydroxy diclofenac

4′-OHDD:

4′-hydroxy diclofenac dehydrate

PNEC:

predicted non-effect concentrations

PPCPs:

pharmaceuticals and personal care products

SRT:

sludge retention time

TOC:

total organic carbon

WWTP:

wastewater treatment plant

References

  • Abdelmelek SB, Greaves J, Ishida KP, Cooper WJ, Song W (2011) Removal of pharmaceutical and personal care products from reverse osmosis retentate using advanced oxidation processes. Environ Sci Technol 45:3665–3671

    Article  CAS  Google Scholar 

  • Achilleos A, Hapeshi E, Xekoukoulatakis NP, Mantzavinos D, Fatta-Kassinos D (2010a) Factors affecting diclofenac decomposition in water by UV-A/TiO2 photocatalysis. Chem Eng J 161:53–59

    Article  CAS  Google Scholar 

  • Achilleos A, Hapeshi E, Xekoukoulotakis, Mantzavinos D, Datta-Kassinos D (2010b) UV-A and solar photodegradation of ibuprofen and carbamazepine catalyzed by TiO2. Sep Sci Technol 45:1564–1570

    Article  CAS  Google Scholar 

  • Agüeran A, Perez Estrada LA, Ferre L, Thurman EM, Malata S, Fernandez-Alba AR (2005) Application of time-of-flight mass spectrometry to the analysis of phototransformation products of diclofenac in water under natural sunlight. J Mass Spectrom 40:908–915

    Article  CAS  Google Scholar 

  • Aguinaco A, Bekltran FJ, Garcia-Araya JF, Oropesa A (2012) Photocatalytic ozonation to remove the phramaceutical diclofenac from water: influence of variables. Chem Eng J 189-190:275–282

    Article  CAS  Google Scholar 

  • Alharbi SK, Kang J, Nghiem LD, van de Merwe JP, Leusch FDL, Price WE (2017) Photolysis and UV/H2O2 of diclofenac, sulfamethoxazole, carbamazepine, and trimethoprim: identification of their major degradation products by ESI-LC-MS and assessment of the toxicity of reaction mixtures. Process Saf Environ Prot 112:222–234

    Article  CAS  Google Scholar 

  • Amro H, Tuffaha R, Zenati S, Jneidi M (2008) Remediation of polluted waters and wastewater by irradiation processing in Jordan. In “Radiation treatment of polluted water and wastewater”. International Atomic Energy Agency, Industrial Application in Chemistry Section, Report IAEATECDOC-1598, IAEA, Vienna

  • Andreozzi R, Raffaele M, Nicklas P (2003) Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment. Chemosphere 50:1319–1330

    Article  CAS  Google Scholar 

  • Bae S, Kim D, Lee W (2013) Degradation of diclofenac by pyrite catalyzed Fenton oxidation. Appl Catal B Environ 134-135:93–102

    Article  CAS  Google Scholar 

  • Bagheri A, Mahvi AH, Nabizadeh R, Dehghani MH, Mahmoudi B, Akbari-Adergani M, Yaghmaeian K (2017) Rapid destruction of the non-steroidal anti-inflammatory drug diclofenac using advanced nano-Fenton process in aqueous solution. Acta Medica Mediter 33:879–883

    Google Scholar 

  • Barazesh JM, Hennebel T, Jasper JT, Sedlak DL (2015) Modular advanced oxidation process enabled by cathodic hydrogen peroxide production. Environ Sci Technol 49:7391–7399

    Article  CAS  Google Scholar 

  • Barcelo D, Petrovic M (2008) Ozone-based technologies in water and wastewater treatment. Chapter in Barcelo D, Petrovic M (eds) Emerging contaminants from industrial and municipal waste. The handbook of environmental chemistry: removal technologies. Springer-Verlag

  • Bartels P, von Tümpling W Jr (2007) Solar radiation influence on the decomposition process of diclofenac in surface waters. Sci Total Environ 374:143–155

    Article  CAS  Google Scholar 

  • Bojanowska-Czajka A, Kciuk G, Gumiela M, Borowiecka S, Nałęcz-Jawecki G, Koc A, Garcia-Reyes JF, Solpan Ozbay D, Trojanowicz M (2015) Analytical, toxicological and kinetic investigation of decomposition of the drug diclofenac in waters and wastes using gamma radiation. Environ Sci Pollut Res 22:20255–20270

    Article  CAS  Google Scholar 

  • Bolton JR, Valladares JE, Zanin JP, Cooper WJ, Nickelson MG (1998) Figures-of-merit for advanced oxidation technologies: a comparison of homogeneous UV/H2O2, heterogeneous UV/TiO2 and electron beam processes. J Adv Oxid Technol 3:174–181

    CAS  Google Scholar 

  • Bolton JR, Bircher KG, Tumas W, Tolman CA (2001) Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric- and solar-driven systems (IUPAC Technical Report). Pure Appl Chem 73(4):627–637

    Article  CAS  Google Scholar 

  • Boxall A, Kolpin D, Halling-Sørensen B, Tolls J (2003) Are veterinary medicines causing environmental risks? Environ Sci Technol 8:286–294

    Article  Google Scholar 

  • Boxall ABA, Sinclair CJ, Fenner K, Kolpin D, Maund SJ (2004) When synthetic chemicals degrade in the environment. Environ Sci Technol 38:368A–354A

    Article  CAS  Google Scholar 

  • Brillas E, Garcia-Segura S, Skoumal M, Arias C (2010) Electrochemical incineration of diclofenac in neutral aqueous medium by anodic oxidation using Pt and boron-doped diamond anodes. Chemosphere 79:605–612

    Article  CAS  Google Scholar 

  • Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O) in aqueous solution. J Phys Chem Ref Data 17:513–886

    Article  CAS  Google Scholar 

  • Calisto V, Domingues MRM, Erny GL, Estevas VI (2011) Direct photodegradation of carbamazepine followed by micellar electrokinetic chromatography and mass spectrometry. Water Res 45:1095–1104

    Article  CAS  Google Scholar 

  • Callegari A, Capodaglio AG (2017) Effects of selected industrial pollutants on urban WWTPs activated sludge population, and possible mitigation strategies. Wat Pract Technol 12(3):619–637

    Article  Google Scholar 

  • Callegari A, Boguniewicz-Zabłocka J, Capodaglio AG (2017) Experimental application of an advanced separation process for NOM removal from surface drinking water supply. Separations 4:32. https://doi.org/10.3390/separations4040032

    Article  Google Scholar 

  • Calza P, Sakkas VA, Medana C, Baiocchio C, Dimou A, Pelizzetti E, Albanis T (2006) Photocatalytic degradation study of diclofenac over aqueous TiO2 suspensions. Appl Catal B Environ 67:197–205

    Article  CAS  Google Scholar 

  • Capodaglio AG (2016) In-stream detection of waterborne priority pollutants, and applications in drinking water contaminant warning systems. Water Sci Technol Water Supply 17(3):707–725

    Article  Google Scholar 

  • Capodaglio AG (2017) High-energy radiation processes for emerging and refractory contaminants removal from water and wastewater. Clean Technol Environ Poll 19(8):1995–2006

    Article  CAS  Google Scholar 

  • Capodaglio AG, Callegari A (2015) Onsite management of tanker ships’ rinse water by means of a compact bioreactor. Wat Prac Technol 10(4):681–687

    Article  Google Scholar 

  • Capodaglio AG, Callegari A (2016) Domestic wastewater treatment with a decentralized, simple technology biomass concentrator reactor. J Wat Sanit Hyg Devel 6(3):507–510

    Article  Google Scholar 

  • Capodaglio AG, Suidan M, Venosa AD, Callegari A (2010) Efficient degradation of MtBE and other gasoline-originated compounds by means of a biological reactor of novel conception: two case studies in Italy and the USA. Water Sci Technol 61(3):807–812

    Article  CAS  Google Scholar 

  • Cecconet D, Molognoni D, Callegari A, Capodaglio AG (2017) Biological combination processes for efficient removal of pharmaceutically active compounds from wastewater: a review and future perspectives. J Environ Chem Eng 5:3590–3603

    Article  CAS  Google Scholar 

  • Cecconet D, Devecseri M, Callegari A, Capodaglio AG (2018) Effects of process operating conditions on the autotrophic denitrification of nitrate-contaminated groundwater using bioelectrochemical systems. Sci Total Environ 613-614:663–671

    Article  CAS  Google Scholar 

  • Chong MN, Jin B, Laera G, Saint CP (2011) Evaluating the photodegradation of carbamazepine in a sequential batch photoreactor system: impacts of effluent organic matter and inorganic ions. Chem Eng J 174:595–602

    Article  CAS  Google Scholar 

  • Clara M, Strenn B, Kreuzinger N (2004) Carbamazepine as a possible anthropogenic marker in the aquatic environment: investigations on the behaviour of carbamazepine in wastewater treatment and during groundwater infiltration. Water Res 38:947–954

    Article  CAS  Google Scholar 

  • Clara M, Kreuzinger N, Strenn B, Gans O, Kroiss H (2005a) The solids retention time—a suitable design parameter to evaluate the capacity of wastewater treatment plants to remove micropollutants. Water Res 39:97–106

    Article  CAS  Google Scholar 

  • Clara M, Strenn B, Gans O, Martinez E, Kreuzinger N, Kroiss H (2005b) Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water Res 39:4797–4807

    Article  CAS  Google Scholar 

  • Coelho AD, Sans C, Esplugas S, Dezotti M (2010) Ozonation of NSAID: a biodegradability and toxicity study. Ozone Sci Eng 32:91–98

    Article  CAS  Google Scholar 

  • Daughton CG, Jones-Lepp T (2001) Pharmaceuticals and personal care products in the environment—scientific and regulatory issues. ACS Symposium Series, vol 791. American Chemical Society, Washington, DC

  • Daughton CG, Ternes T (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect Suppl 107:907–938

    Article  CAS  Google Scholar 

  • De la Cruz N, Gimenez J, Esplugas S, Grandjean D, de Alencastro LF, Pulgarin C (2012) Degradation of 32 emergent contaminants by UV and neutral photo-Fenton in domestic wastewater effluent previously treated by activated sludge. Water Res 46:1942–1957

    Google Scholar 

  • Deng J, Shao Y, Gao NY, Xia SJ, Tan CQ, Zhou SQ, Hu XH (2013) Degradation of the antiepileptic drug carbamazepine upon different UV-based advanced oxidation processes in water. Chem Eng J 222:150–158

    Article  CAS  Google Scholar 

  • EC (2008) Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and amending Directive 2000/60/EC of the European Parliament and of the council. Off J Eur Union L348:84–97

    Google Scholar 

  • EC (2013) Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Off J Eur Union L226:1–17

    Google Scholar 

  • Esplugas S, Bila DM, Krause LGT, Dezotti M (2007) Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents. J Hazard Mater 149:631–642

    Article  CAS  Google Scholar 

  • Fang JY, Fu Y, Shang C (2014) The roles of reactive species in micropollutant degradation in the UV/free chlorine system. Environ Sci Technol 48:1859–1868

    Article  CAS  Google Scholar 

  • Feng L, van Hullebusch ED, Rodrigo MA, Esposito G, Oturan MA (2013) Removal of residual anti-inflammatory and analgesic pharmaceuticals from aqueous systems by electrochemical advanced oxidation processes. A review. Chem Eng J 228:944–964

    Article  CAS  Google Scholar 

  • Finkbeiner P, Franke M, Anschuetz F, Ignaszak A, Stelter N, Braeutigam P (2015) Sonoelectrochemical degradation of the anti-inflammatory drug diclofenac in water. Chem Eng J 273:214–222

    Article  CAS  Google Scholar 

  • Giri RR, Ozaki H, Ota S, Takanami R, Taniguchi S (2010) Degradation of common pharmaceuticals and personal care products in mixed solutions by advanced oxidation techniques. Int J Environ Sci Technol 7:251–260

    Article  CAS  Google Scholar 

  • Giri RR, Ozaki H, Takayanagi Y, Taniguchi S, Takanami R (2011) Efficacy of ultraviolet radiation and hydrogen peroxide oxidation to eliminate large number of pharmaceutical compounds in mixed solution. Int J Environ Sci Technol 8:19–30

    Article  CAS  Google Scholar 

  • Hartmann J, Bartels P, Mau U, Witter M, von Tumpling W, Hofmann J, Nietzchmann E (2008) Degradation of the drug diclofenac in water by sonolysis in the presence of catalyst. Chemosphere 70:453–461

    Article  CAS  Google Scholar 

  • He S, Wang J, Ye L, Zhang Y, Yu J (2014) Removal of diclofenac from surface water by electron beam irradiation combined with a biological aerated filter. Radiat Phys Chem 105:104–108

    Article  CAS  Google Scholar 

  • Heberer T (2002) Occurrence, fate and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol Lett 131(1–2):5–17

    Article  CAS  Google Scholar 

  • Helbling DE, Hollender J, Kohler HE, Singer H, Fenner K (2010) High-throughput identification of microbial transformation products of organic micropollutants. Environ Sci Technol 44(17):6621–6627

    Article  CAS  Google Scholar 

  • Hofmann J, Freier U, Wecks M, Hohmann (2007) Degradation of diclofenac in water by heterogeneous catalytic oxidation with H2O2. Appl Catal B Environ 70:447–451

    Article  CAS  Google Scholar 

  • Homlok R, Takács E, Wojnárovits L (2011) Elimination of diclofenac from water using irradiation technology. Chemosphere 85:603–608

    Article  CAS  Google Scholar 

  • IAEA (2014) Nuclear technology review. International Atomic Energy Agency, Vienna

    Google Scholar 

  • Jelic A, Gros M, Ginebreda A, Cespedes-Sanchez R, Ventura F, Petrovic M, Barcelo D (2011) Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Res 45(3):1165–1176

    Article  CAS  Google Scholar 

  • Joss A, Zabaczynski S, Göbel A, Hoffmann B, Löffler D, McArdell CS, Ternes TA, Thomsen A, Siegrist H (2006) Biological degradation of pharmaceuticals in municipal wastewater treatment: proposing a classification scheme. Water Res 40:1686–1696

    Article  CAS  Google Scholar 

  • Jux U, Baginski M, Arnold HG, Krönke M, Seng PN (2002) Detection of pharmaceutical contaminants of river, pond, and tap water from Cologne (Germany) and surroundings. Int J Hyg Environ Health 205:393–398

    Article  CAS  Google Scholar 

  • Kimura K, Hara H, Watanabe Y (2007) Elimination of selected acidic pharmaceuticals from municipal wastewater by an activated sludge system and membrane bioreactors. Environ Sci Technol 41:3708–3714

    Article  CAS  Google Scholar 

  • Kimura A, Osawa M, Taguchi M (2012) Decomposition of persistent pharmaceuticals in wastewater by ionizing radiation. Radiat Phys Chem 81:1508–1512

    Article  CAS  Google Scholar 

  • Komtchou S, Dirany A, Drogui P, Bermond A (2015) Removal of carbamazepine from spiked municipal wastewater using electro-Fenton process. Environ Sci Pollut Res 22:11513–11525

    Article  CAS  Google Scholar 

  • Kruithof JC, Kamp PC, Martijn BJ (2007) UV/H2O2 treatment: a practical solution for organic contaminant control and primary disinfection. Ozone Sci Eng 29:273–280

    Article  CAS  Google Scholar 

  • Kümmerer K (2001) Drugs in the environment: emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources—a review. Chemosphere 45(6-7):957–969

    Article  Google Scholar 

  • Laera G, Ching MN, Jin B, Lopez A (2011) An integrated MBR-TiO2 photocatalysis process for the removal of carbamazepine from simulated pharmaceutical industrial effluent. Biosource Technol 102:7012–7015

    Article  CAS  Google Scholar 

  • Lester Y, Mamane H, Zucker I, Avisar D (2013) Treating wastewater from a pharmaceutical formulation facility by biological process and ozone. Water Res 47:4349–4356

    Article  CAS  Google Scholar 

  • Liu Q, Luo X, Zheng Z, Zheng B, Zhang J, Zhao Y, Yang X, Wang Y, Wang L (2011) Factors that have an effect on degradation of diclofenac in aqueous solution by gamma ray irradiation. Environ Sci Pollut Res 18:1243–1252

    Article  CAS  Google Scholar 

  • Liu N, Lei ZD, Wang T, Wang JJ, Zhang XD, Xu G, Tang L (2016) Radiolysis of carbamazepine aqueous solution using electron beam irradiation combining with hydrogen peroxide: efficiency and mechanism. Chem Eng J 295:484–493

    Article  CAS  Google Scholar 

  • Luo Y, Guo W, Ngo HH, Nghiem LD, Hai FI, Zhang J, Liang S, Wang XC (2014) A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ 473-474:619–641

    Article  CAS  Google Scholar 

  • Martinez C, Canle M, Fernandez MI, Santaballa JA, Faria J (2011) Aqueous degradation of diclofenac by heterogeneous photocatalysis using nanostructured materials. Appl Catal B Environ 107:110–118

    Article  CAS  Google Scholar 

  • Martinez-Huitle CA, Ferro S (2006) Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem Soc Rev 35:1324–1340

    Article  CAS  Google Scholar 

  • Matamoros V, Dubec A, Albaiges J, Bayona JM (2009) Photodegradation of carbamazepine, ibuprofen, ketoprofen and 17α-ethinylestradiol in fresh and sweater. Wat Air Sci Pollut 196:161–168

    Article  CAS  Google Scholar 

  • McDowell DC, Huber MM, Wagner M, Von Gunten U, Ternes TA (2005) Ozonation of carbamazepine in drinking water: identification and kinetic study of major oxidation products. Environ Sci Technol 39:8014–8022

    Article  CAS  Google Scholar 

  • Michael I, Achilleos A, Lambropoulou D, Osorio Torrens V, Perez S, Petrovic M, Barcelo D, Fatta-Kassionos D (2014) Proposed transformation pathway and evolution profile of diclofenac and ibuprofen transformation products during (sono)photocatalysis. Appl Catal B Environ 147:1015–1027

    Article  CAS  Google Scholar 

  • Molognoni D, Devecseri M, Cecconet D, Capodaglio AG (2017) Cathodic groundwater denitrification with a bioelectrochemical system. J Wat Proc Eng 19:67–73

    Article  Google Scholar 

  • Monteagudo JM, Duran A, Gonzalez EAJ (2015) In situ chemical oxidation of carbamazepine solutions using persulfate simultaneously activated by heat energy, UV light, Fe2+ ions, and H2O2. Appl Catal B Environ 176-177:120–129

    Article  CAS  Google Scholar 

  • Naddeo V, Belgiorno V, Ricco D, Kassinos D (2009) Degradation of diclofenac during sonolysis, ozonation and their simultaneous applications. Ultrason Sonochem 16:790–794

    Article  CAS  Google Scholar 

  • Nie E, Yang M, Wang D, Yang X, Luo X, Zheng Z (2014) Degradation of diclofenac by ultrasonic irradiation: kinetic studies and degradation pathways. Chemosphere 113:165–170

    Article  CAS  Google Scholar 

  • O’Connor N, Dargan PI, Jones AL (2003) Hepatocellular damage from non-steroidal anti-inflammatory drugs. Q J Med 96:787–791

    Article  Google Scholar 

  • Paxéus N (2004) Removal of selected non-steroidal anti-inflammatory drugs (NSAIDs), gemfibrozil, carbamazepine, β-blockers, trimethoprim and triclosan in conventional wastewater treatment plants in five EU countries and their discharge to the aquatic environment. Water Sci Technol 50:253–260

    Article  Google Scholar 

  • Perez-Estrada LA, Maldonado MI, Gernjak W, Aguera A, Fernandez-Alba BMM, Malato S (2005) Decomposition of diclofenac by solar driven photocalaysis at pilot plant scale. Catal Today 101:219–236

    Article  CAS  Google Scholar 

  • Petrovic M, Gonzalez S, Barcelo D (2003) Analysis and removal of emerging contaminants in wastewater and drinking water. Trends Anal Chem 22(10):685–696

    Article  CAS  Google Scholar 

  • Poiger T, Buser HR, Müller MD (2001) Photodegradation of the pharmaceutical drug diclofenac in a lake: pathway, field measurements, and mathematical modeling. Environ Toxicol Chem 20:256–263

    Article  CAS  Google Scholar 

  • POSEIDON (2006) POSEIDON Final Report: assessment of technologies for the removal of pharmaceuticals and personal care products in sewage and drinking water facilities to improve the indirect potable water reuse. Contract no. EVK1-CT-2000-00047

  • Quintana BJ, Weiss S, Reemtsma T (2005) Pathways and metabolites of microbial degradation of selected acidic pharmaceutical and their occurrence in municipal wastewater treated by a membrane bioreactor. Water Res 39:2654–2664

    Article  CAS  Google Scholar 

  • Ravina M, Campanella L, Kiwi J (2002) Accelerated mineralization of the drug diclofenac via Fenton reactions in a concentric photo-reactor. Water Res 36:3553–3560

    Article  CAS  Google Scholar 

  • Rizzo L, Meric S, Kassinos D, Guida M, Russo F, Belgiorno V (2009) Degradation of diclofenac by TiO2 photocatalysis: UV absorbance kinetics and process evaluation through a set of toxicity bioassays. Water Res 43:979–988

    Article  CAS  Google Scholar 

  • Scheytt TJ, Mersmann P, Heberer T (2006) Mobility of pharmaceuticals carbamazepine, diclofenac, ibuprofen, and propyphenazone in miscible displacement experiments. J Contam Hydrol 83:53–69

    Article  CAS  Google Scholar 

  • Sichel C, Garcia C, Andre K (2011) Feasibility studies: UV/chlorine advanced oxidation treatment for the removal of emerging contaminants. Water Res 45:6371–6380

    Article  CAS  Google Scholar 

  • Stülten D, Zühlke S, Lamshöft M, Spiteller M (2008) Occurrence of diclofenac and selected metabolites in sewage effluents. Sci Total Environ 405(1–3):310–316

    Article  CAS  Google Scholar 

  • Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32:3245–3260

    Article  CAS  Google Scholar 

  • Ternes TA, Herrmann N, Bonerz M, Knacker T, Siegrist H, Joss A (2004) A rapid method to measure the solid–water distribution coefficient (Kd) for pharmaceuticals and musk fragrances in sewage sludge. Water Res 38:4075–4084

    Article  CAS  Google Scholar 

  • Tokumura M, Sugawatra A, Raknuzzaman M, Habibullah-Al-Mamun M, Masunaga S (2016) Comprehensive study on effects of water matrices on removal of pharmaceuticals by three different kinds of AOP. Chemosphere 159:317–325

    Article  CAS  Google Scholar 

  • Trojanowicz M, Bojanowska-Czajka A, Capodaglio AG (2017) Can radiation chemistry supply a highly efficient AO(R)P process for organics removal from drinking and waste water? A review. Environ Sci Pollut Res 24:20187–20208

    Article  CAS  Google Scholar 

  • Tuerk J, Sayder B, Boergers A, Vitz H, Kiffmeyer TK, Kabasci S (2010) Efficiency, costs and benefits of AOPs for removal of pharmaceuticals from the water cycle. Water Sci Technol 61:985–993

    Article  CAS  Google Scholar 

  • Urase T, Kikuta T (2005) Separate estimation of adsorption and degradation of pharmaceutical substances and estrogens in the activated sludge process. Water Res 39:1289–1300

    Article  CAS  Google Scholar 

  • Vedenyapuina MD, Strel’tsova ED, Davshan NA, Vedenyapin AA (2011) Study of the electrochemical degradation of diclofenac on a boron-doped diamond electrode by UV spectroscopy. Russ J Appl Chem 84:204–207

    Article  CAS  Google Scholar 

  • Vogna D, Marotta R, Andreozzi R, Napolitano A, d’Ischia M (2004a) Kinetic and chemical assessment of the UV/H2O2 treatment of antiepileptic drug carbamazepine. Chemosphere 54:497–505

    Article  CAS  Google Scholar 

  • Vogna D, Marotta R, Napolitano A, Andreozzi R, d’Ischia M (2004b) Advanced oxidation of the pharmaceutical drug diclofenac with UV/H2O2 and ozone. Water Res 38:414–423

    Article  CAS  Google Scholar 

  • Wang D, Bolton JR, Hofmann R (2012) Medium pressure UV combined with chlorine advanced oxidation for trichloroethylene destruction in a model water. Water Res 46:4677–4686

    Article  CAS  Google Scholar 

  • Wang D, Bolton JR, Andrews SA, Hofmann R (2015) Disinfection by-products in the ultraviolet/chlorine oxidation process. Sci Total Environ 518–519:49–57

    Article  CAS  Google Scholar 

  • Wu Q, Shi H, Adams CD, Timmons T, Ma Y (2012) Oxidative removal of selected endocrine-disruptors and pharmaceuticals in drinking water treatment systems, and identification of degradation products of triclosan. Sci Total Environ 439:18–25

    Article  CAS  Google Scholar 

  • Xu G, Liu N, Wu MH, Bu TT, Zheng M (2013) The photodegradation of clopyralid in aqueous solutions: effects of light sources and water constituents. Ind Eng Chem Res 52(29):9770–9774

    Article  CAS  Google Scholar 

  • Yu H, Nie E, Xu J, Yan S, Cooper WJ, Song W (2013) Degradation of diclofenac by advanced oxidation and reduction processes: kinetic studies, degradation pathways and toxicity assessments. Water Res 47:1909–1918

    Article  CAS  Google Scholar 

  • Zhang Y, Geißen S, Gal C (2008) Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 73:1151–1161

    Article  CAS  Google Scholar 

  • Zhao X, Hou Y, Liu H, Qiang Z, Qu J (2009) Electro-oxidation of diclofenac at boron doped diamond: kinetics and mechanism. Electrochim Acta 54:4172–4179

    Article  CAS  Google Scholar 

  • Zheng M, Xu G, Pei J, He X, Xu P, Liu N, Wu M (2014) EB-radiolysis of carbamazepine: in pure-water with different ions and in surface water. J Radioanal Nucl Chem 302:139–147

    Article  CAS  Google Scholar 

  • Zheng M, Xu G, Zhao L, Pei JC, Wu MH (2015) Comparison of EB-radiolysis and UV/H2O2-degradation of CBZ in pure water and solutions. Nucl Sci Tech 26. https://doi.org/10.13538/j.1001-8042/nst.26.20302

  • Zhou S, Xia Y, Li T, Yao T, Shi Z, Zhu S, Gao N (2016) Degradation of carbamazepine by UV/chlorine advanced oxidation process and formation of disinfection by-products. Environ Sci Pollut Res 23:16448–16455

    Article  CAS  Google Scholar 

  • Ziylan A, Dogan S, Agopean S, Kidak R, Aviyente V, Ince NH (2014) Sonochemical degradation of diclofenac: byproduct assessment, reaction mechanisms and environmental considerations. Environ Sci Pollut Res 21:5929–5939

    Article  CAS  Google Scholar 

  • Zwiener C, Frimmel FH (2000) Oxidative treatment of pharmaceuticals in water. Water Res 34:1881–1885

    Article  CAS  Google Scholar 

Download references

Funding

This work was partly supported by a grant from the Polish National Center of Science (NCN); project OPUS 8, number 2014/15/B/ST4/04601.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea G. Capodaglio.

Additional information

Responsible editor: Vítor Pais Vilar

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capodaglio, A.G., Bojanowska-Czajka, A. & Trojanowicz, M. Comparison of different advanced degradation processes for the removal of the pharmaceutical compounds diclofenac and carbamazepine from liquid solutions. Environ Sci Pollut Res 25, 27704–27723 (2018). https://doi.org/10.1007/s11356-018-1913-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-1913-6

Keywords

Navigation