Skip to main content
Log in

Trace elements: water-sediment interactions in tropical rivers

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This research aimed to determine the water-sediment interaction (partition coefficient Kd) of trace element (Cd, Cu, total Cr, Pb, and Zn) in tropical rivers of the Upper Paraná River basin, Central Brazil. Three trace elements (Cu, total Cr, and Zn) presented quantifiable concentration values in the water and sediment. Neither the element trace considered nor the rivers displayed a similar water-sediment interaction. The evaluation of Kd values indicates the tendency of total Cr to be adsorbed into the sediment (min Kd = 6.244, max Kd = 131.389), mainly in one sampling station (São Francisco River, Kd = 131.389) and the availability of Zn in the water column in all sampling stations (min Kd = 0.234, max Kd = 1.289). The sediment concentrations of Cr in the São Francisco sampling station (0.118 mg L−1) are above international reference values suggesting a risk of contamination for the biota, whereas in four rivers, Cr concentrations represent a risk. The water-sediment interaction of Cu is influenced by water temperature, whereas the pH influenced the Zn interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Allison JD, Allison TL (2005) Partition coefficients for metals in surface water, soil, and waste. Rep. EPA/600/R-05/074

  • Alloway B (2013) Heavy metals in soil: trace metals and metalloids in soil and their bioavailability. Springer, New York

    Book  Google Scholar 

  • Almeida L, Resende L, Rodrigues A (2006) Hidrogeologia do estado de Goiás e Distrito Federal (Hydrogeology of the Goiás State and Federal District). Superintendência de Geologia Mineração (Superintendency of Mining Geology). Goiás. Série Geologia e Mineração. Brazil. Technical report, pp 232

  • Amer MW, Khalili FI, Awwad AM (2010) Adsorption of lead, zinc and cadmium ions on polyphosphate-modified kaolinite clay. J Environ Chem Ecotoxicol 2:001–008

    CAS  Google Scholar 

  • Araújo R, Goedert WJ, Lacerda MPC (2007) Qualidade de um solo sob diferentes usos e sob cerrado nativo. Rev Bras Ciênc Solo 31:1099–1108

    Article  Google Scholar 

  • Bai J, Xiao R, Zhang K, Gao H (2012) Arsenic and heavy metal pollution in wetland soils from tidal freshwater and salt marshes before and after the flow-sediment regulation regime in the Yellow River Delta, China. J Hydrol 450:244–253

    Article  Google Scholar 

  • Beck M, Dellwig O, Fischer S, Schnetger B, Brumsack H-J (2012) Trace metal geochemistry of organic carbon-rich watercourses draining the NW German coast. Estuar Coast Shelf Sci 104:66–79

    Article  Google Scholar 

  • Canadian Council of Ministers of the Environment (CCME) (2007) Canadian environmental quality guidelines. http://st-ts.ccme.ca/en/index.html. Accessed 5 Dec 2016

  • Čerović LS, Milonjić S, Todorović M, Trtanj M, Pogozhev Y, Blagoveschenskii Y, Levashov E (2007) Point of zero charge of different carbides. Colloids Surf A Physicochem Eng Asp 297:1–6

    Article  Google Scholar 

  • Chen S-Y, Lin J-G (2001) Bioleaching of heavy metals from sediment: significance of pH. Chemosphere 44:1093–1102

    Article  CAS  Google Scholar 

  • Cho E, Arhonditsis GB, Khim J, Chung S, Heo T-Y (2016) Modeling metal-sediment interaction processes: parameter sensitivity assessment and uncertainty analysis. Environ Model Softw 80:159–174

    Article  Google Scholar 

  • da Silva EF, Almeida SF, Nunes ML, Luís AT, Borg F, Hedlund M, de Sá CM, Patinha C, Teixeira P (2009) Heavy metal pollution downstream the abandoned Coval da Mó mine (Portugal) and associated effects on epilithic diatom communities. Sci Total Environ 407:5620–5636

    Article  Google Scholar 

  • da Silva PP, de Oliveira Santos LTS, de Jesus TB (2017) Assessment of heavy metal contamination in sub-tropical riverine sediments using geoaccumulation index. Ecotoxicol Environ Contam 12:1–9

    Google Scholar 

  • Dąbrowski A, Hubicki Z, Podkościelny P, Robens E (2004) Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 56:91–106

    Article  Google Scholar 

  • Delgado-Moreno L, Wu L, Gan J (2010) Effect of dissolved organic carbon on sorption of pyrethroids to sediments. Environ Sci Technol 44:8473–8478

    Article  CAS  Google Scholar 

  • Duarte B, Silva G, Costa JL, Medeiros JP, Azeda C, Sá E, Metelo I, Costa MJ, Caçador I (2014) Heavy metal distribution and partitioning in the vicinity of the discharge areas of Lisbon drainage basins (Tagus estuary, Portugal). J Sea Res 93:101–111

    Article  Google Scholar 

  • Edgell K (1989) USEPA method study 37 SW-846 method 3050 acid digestion of sediments, sludges, and soils. US Environmental Protection Agency, Environmental Monitoring Systems Laboratory

  • Eggleton J, Thomas KV (2004) A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environ Int 30:973–980

    Article  CAS  Google Scholar 

  • Ertani A, Mietto A, Borin M, Nardi S (2017) Chromium in agricultural soils and crops: a review. Water Air Soil Pollut 228:190–202

    Article  Google Scholar 

  • Förstner U, Wittmann GT (2012) Metal pollution in the aquatic environment. Springer Science & Business Media, Berlin

    Google Scholar 

  • Fossen H (2016) Structural geology. Cambridge University Press, Cambridge

    Google Scholar 

  • Garneau C, Sauvage S, Sánchez-Pérez J-M, Lofts S, Brito D, Neves R, Probst A (2017) Modelling trace metal transfer in large rivers under dynamic hydrology: a coupled hydrodynamic and chemical equilibrium model. Environ Model Softw 89:77–96

    Article  Google Scholar 

  • Gode F, Pehlivan E (2006) Removal of chromium (III) from aqueous solutions using Lewatit S 100: the effect of pH, time, metal concentration and temperature. J Hazard Mater 136:330–337

    Article  CAS  Google Scholar 

  • Islam MS, Ahmed MK, Raknuzzaman M, Habibullah-Al-Mamun M, Islam MK (2015) Heavy metal pollution in surface water and sediment: a preliminary assessment of an urban river in a developing country. Ecol Indic 48:282–291

    Article  CAS  Google Scholar 

  • Jones CA, Nimick DA, McCleskey RB (2004) Relative effect of temperature and pH on diel cycling of dissolved trace elements in prickly Pear Creek, Montana. Water Air Soil Pollut 153:95–113

    Article  CAS  Google Scholar 

  • Kumar B, Senthil Kumar K, Priya M, Mukhopadhyay D, Shah R (2010) Distribution, partitioning, bioaccumulation of trace elements in water, sediment and fish from sewage fed fish ponds in eastern Kolkata, India. Toxicol Environ Chem 92:243–260

    Article  CAS  Google Scholar 

  • Levina A, Codd R, Dillion CT, Lay PA (2003) Chromium in biology: toxicology and nutritional aspects. In: Karlin KD (ed) Progress in inorganic chemistry. John Wiley & Sons (Inc.), New York, pp 145–250

    Google Scholar 

  • Micó C, Recatalá L, Peris M, Sánchez J (2006) Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere 65:863–872

    Article  Google Scholar 

  • Minkina T, Pinskii D, Mandzhieva S, Antonenko E, Sushkova S (2011) Effect of the particle-size distribution on the adsorption of copper, lead, and zinc by Chernozemic soils of Rostov oblast. Eurasian Soil Sci 44:1193–1200

    Article  CAS  Google Scholar 

  • Mohiuddin K, Otomo K, Ogawa Y, Shikazono N (2012) Seasonal and spatial distribution of trace elements in the water and sediments of the Tsurumi River in Japan. Environ Monit Assess 184:265–279

    Article  CAS  Google Scholar 

  • Moore JW, Ramamoorthy S (2012) Heavy metals in natural waters: applied monitoring and impact assessment. Springer Science & Business Media, New York

    Google Scholar 

  • Nascimento MR, Mozeto AA (2008) Reference values for metals and metalloids concentrations in bottom sediments of Tiete River basin, southeast of Brazil. Soil Sediment Contam 17:269–278

    Article  CAS  Google Scholar 

  • Nazeer S, Hashmi MZ, Malik RN (2014) Heavy metals distribution, risk assessment and water quality characterization by water quality index of the river Soan, Pakistan. Ecol Indic 43:262–270

    Article  CAS  Google Scholar 

  • Nouri J, Mahvi A, Jahed G, Babaei A (2008) Regional distribution pattern of groundwater heavy metals resulting from agricultural activities. Environ Geol 55:1337–1343

    Article  CAS  Google Scholar 

  • Pan G, You C (2010) Sediment–water distribution of perfluorooctane sulfonate (PFOS) in Yangtze River estuary. Environ Pollut 158:1363–1367

    Article  CAS  Google Scholar 

  • Protano C, Zinnà L, Giampaoli S, Spica VR, Chiavarini S, Vitali M (2014) Heavy metal pollution and potential ecological risks in rivers: a case study from southern Italy. Bull Environ Contam Toxicol 92:75–80

    Article  CAS  Google Scholar 

  • Ribeiro JF, Walter BMT (1998) Fitofisionomias do bioma Cerrado. In: Sano SM, de Almeida SP (eds) Cerrado: ambiente e flora. Planaltina, EMBRAPA-CPAC, pp 89–166

    Google Scholar 

  • Salati S, Moore F (2010) Assessment of heavy metal concentration in the Khoshk River water and sediment, shiraz, Southwest Iran. Environ Monit Assess 164:677–689

    Article  CAS  Google Scholar 

  • Santos A, Melo-Junior G, Segundo J (2002) Concentração de metais pesados em frações granulométricas de sedimentos de fundo do rio Pitimbu, região sul da Grande Natal (RN): implicações para levantamentos ambientais. Rev Geol 15:01–08

    Article  Google Scholar 

  • Shaheen SM, Rinklebe J (2014) Geochemical fractions of chromium, copper, and zinc and their vertical distribution in floodplain soil profiles along the central Elbe River, Germany. Geoderma 228:142–159

    Article  Google Scholar 

  • Skeries K, Jamieson H, Falck H, Paradis S, Day S (2017) Geochemical and mineralogical controls on metal (loid) dispersion in streams and stream sediments in the Prairie Creek district, NWT. Geochem Explor Environ Anal 17:1–19

    Article  Google Scholar 

  • Smolyakov B, Ryzhikh A, Bortnikova S, Saeva O, Chernova NY (2010) Behavior of metals (cu, Zn and cd) in the initial stage of water system contamination: effect of pH and suspended particles. Appl Geochem 25:1153–1161

    Article  CAS  Google Scholar 

  • Stumm W, Morgan JJ (2012) Aquatic chemistry: chemical equilibria and rates in natural waters. John Wiley & Sons, New York

    Google Scholar 

  • Vukovic Z, Radenkovic M, Stankovic SJ, Vukovic D (2011) Distribution and accumulation of heavy metals in the water and sediments of the river Sava. J Serb Chem Soc 76:795–803

    Article  CAS  Google Scholar 

  • Wojtkowska M, Bogacki J, Witeska A (2016) Assessment of the hazard posed by metal forms in water and sediments. Sci Total Environ 551:387–392

    Article  Google Scholar 

  • Yao Y, Gao B, Chen H, Jiang L, Inyang M, Zimmerman AR, Cao X, Yang L, Xue Y, Li H (2012) Adsorption of sulfamethoxazole on biochar and its impact on reclaimed water irrigation. J Hazard Mater 209:408–413

    Article  Google Scholar 

  • You C, Jia C, Pan G (2010) Effect of salinity and sediment characteristics on the sorption and desorption of perfluorooctane sulfonate at sediment-water interface. Environ Pollut 158:1343–1347

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff of the Aquatic Biology Center/Escola de Ciências Agrárias e Biológicas/PUC Goiás, mainly Mr. Waldeir Francisco de Menezes for the help on field data collection, the Fundação de Amparo à Pesquisa do Estado de Goiás (FAPEG) by funding grant (No. 201200546180122) of the project, which is part of this manuscript, and two anonymous reviewers by their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrique Santana Costa.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, H.S., Tejerina-Garro, F.L. & Rocha, C. Trace elements: water-sediment interactions in tropical rivers. Environ Sci Pollut Res 24, 22018–22025 (2017). https://doi.org/10.1007/s11356-017-9698-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9698-6

Keywords

Navigation