Skip to main content
Log in

Assessment of nonsteroidal anti-inflammatory drugs by ultrasonic-assisted extraction and GC-MS in Mgeni and Msunduzi river sediments, KwaZulu-Natal, South Africa

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The occurrence of eight pharmaceuticals was monitored during four seasons (spring, summer, autumn, and winter) along a 250-km stretch of the Msunduzi and Mgeni rivers in KwaZulu-Natal, South Africa. This paper describes an optimized method for the determination of nonsteroidal anti-inflammatory drugs (NSAIDs) in sediments. The method combines ultrasonic, centrifuge, and gas chromatography-mass spectrometry for the detection of these drugs in solid samples. Most of the parameters that affect the extraction step were optimized. Solid samples were placed in a centrifuge tube and extracted with ethyl acetate:acetone (1:1, two cycles), followed by clean-up with Oasis HLB cartridge and derivatization with N, O-bis(trimethylsilyl) trifluoroacetamide (BSTFA). Satisfactory recoveries were obtained ranging from 66 to 130%, depending on the analyte. Precision expressed as RSD (%) (n = 3) was less than 20% for all analytes. The LODs and LOQs were in the range of 0.024 to 1.90 ng g−1 which allowed to be applied in the analysis solid samples in Msunduzi and Mgeni rivers. In the solid samples analyzed, NSAID concentration ranged from not detected to 221 ng g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agunbiade FO, Moodley B (2016) Occurrence and distribution pattern of acidic pharmaceuticals in surface water, wastewater, and sediment of the Msunduzi River, Kwazulu-Natal, South Africa. Environ Toxicol Chem 35:36–46

    Article  CAS  Google Scholar 

  • Ankley GT, Brooks BW, Huggett DB, Sumpter JP (2007) Repeating history: pharmaceuticals in the environment. Environ Sci Technol 41:8211–8217. doi:10.1021/es072658j

    Article  CAS  Google Scholar 

  • Antonic J, Heath E (2007) Determination of NSAIDs in river sediment samples. Anal Bioanal Chem 387:1337–1342

    Article  CAS  Google Scholar 

  • Blom K (2015) Drainage systems, an occluded source of sanitation related outbreaks. Arch Public Health 73:8. doi:10.1186/s13690-014-0056-6

    Article  Google Scholar 

  • Brewer AJ, Lunte C (2015) Analysis of nucleosides in municipal wastewater by large-volume liquid chromatography tandem mass spectrometry. Anal Methods 7:5504–5510. doi:10.1039/C5AY00929D

    Article  CAS  Google Scholar 

  • Buser H-R, Müller MD, Theobald N (1998) Occurrence of the pharmaceutical drug clofibric acid and the herbicide mecoprop in various Swiss lakes and in the North Sea. Environ Sci Technol 32:188–192. doi:10.1021/es9705811

    Article  CAS  Google Scholar 

  • Caracciolo AB, Topp E, Grenni P (2015) Pharmaceuticals in the environment: biodegradation and effects on natural microbial communities. A review J Pharm Biomed Anal 106:25–36. doi:10.1016/j.jpba.2014.11.040

    Article  Google Scholar 

  • Carmona E, Andreu V, Pico Y (2014) Occurrence of acidic pharmaceuticals and personal care products in Tuna River Basin: from waste to drinking water. Sci Total Environ 484:53–63. doi:10.1016/j.scitotenv2014.02.085

    Article  CAS  Google Scholar 

  • Celiz MD, Tso J, Aga DS (2009) Pharmaceutical metabolites in the environment: Analytical challenges and ecological risks. Environ Toxicol Chem 28:2473–2484. doi:10.1897/09-173.1

    Article  CAS  Google Scholar 

  • Chen M, Yi Q, Hong J, Zhang L, Lin K, Yuan D (2015) Simultaneous determination of 32 antibiotics and 12 pesticides in sediment using ultrasonic-assisted extraction and high performance liquid chromatography-tandem mass spectrometry. Anal Methods 7:1896–1905. doi:10.1039/C4AY02895C

    Article  CAS  Google Scholar 

  • Fairbairn DJ, Karpuzcu ME, Arnold WA, Barber BL, Kaufenberg EF, Koskinen WC, Novak PJ, Rice PJ, Swackhamer DL (2015) Sediment-water distribution of contaminants of emerging concern in a mixed use watershed. Sci Total Environ 505:896–904. doi:10.1016/j.scitotenv.2014.10.046

    Article  CAS  Google Scholar 

  • Gakuba E, Moodley B, Ndungu P, Birungi G (2015) Occurrence and significance of polychlorinated biphenyls in water, sediment pore water and surface sediments of Umgeni River, KwaZulu-Natal, South Africa. Environ Monit Assess 187 doi:10.1007/s10661-015-4790-1

  • Gavrilescu M, Demnerova K, Aamand J, Agathoss S, Fava F (2015) Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation. New Biotech 32:147–156. doi:10.1016/j.nbt.2014.01.001

    Article  CAS  Google Scholar 

  • Gomez MJ, Aguera A, Mezcua M, Hurtado J, Mocholi F, Fernandez-Alba AR (2007) Simultaneous analysis of neutral and acidic pharmaceuticals as well as related compounds by gas chromatography-tandem mass spectrometry in wastewater. Talanta 73:314–320. doi:10.1016/j.talanta.2007.03.053

    Article  CAS  Google Scholar 

  • Gumbi BP, Moodley B, Birungi G, Ndungu PG (2017) Detection and quantification of acidic drug residues in South African surface water using gas chromatography-mass spectrometry. Chemosphere:168, 1042–1050. doi:10.1016/j.chemosphere.2016.10.105

  • Halling-Sørensen B, Nors Nielsen S, Lanzky PF, Ingerslev F, Holten Lützhøft HC, Jørgensen SE (1998) Occurrence, fate and effects of pharmaceutical substances in the environment—a review. Chemosphere 36:357–393. doi:10.1016/S0045-6535(97)00354-8

    Article  Google Scholar 

  • Hao C, Zhao X, Yang P (2007) GC-MS and HPLC-MS analysis of bioactive pharmaceuticals and personal-care products in environmental matrices. TrAC, Trends Anal Chem 26:569–580. doi:10.1016/j.trac.2007.02.011

    Article  CAS  Google Scholar 

  • Jindal K, Narayanam M, Singh S (2015) A systematic strategy for the identification and determination of pharmaceuticals in environment using advanced LC-MS tools: application to ground water samples. J Pharm Biomed Anal 108:86–96. doi:10.1016/j.jpba.2015.02.003

    Article  CAS  Google Scholar 

  • Jones OAH, Voulvoulis N, Lester JN (2001) Human pharmaceuticals in the aquatic environment a review. Environ Technol 22:1383–1394. doi:10.1080/09593332208618186

    Article  CAS  Google Scholar 

  • Jones OAH, Voulvoulis N, Lester JN (2006) Partitioning behavior of five pharmaceutical compounds to activated sludge and river sediment. Arch Environ Contam Toxicol 50:297–305

    Article  CAS  Google Scholar 

  • K'Oreje KO, Vergeynst L, Ombaka D, De Wispelaere P, Okoth M, Van Langenhove H, Demeestere K (2016) Occurrence patterns of pharmaceutical residues in wastewater, surface water and groundwater of Nairobi and Kisumu city, Kenya. Chemosphere 149:238–244. doi:10.1016/j.chemosphere.2016.01.095

    Article  Google Scholar 

  • Kumirska J, Migowska N, Caban M, Lukaszewicz P, Stepnowski P (2015) Simultaneous determination of non-steroidal anti-inflammatory drugs and oestrogenic hormones in environmental solid samples. Sci Total Environ 508:498–505. doi:10.1016/j.scitotenv.2014.12.020

    Article  CAS  Google Scholar 

  • Kümmerer K (2003) Significance of antibiotics in the environment. J Antimicrob Chemother 52:5–7

    Article  Google Scholar 

  • Kuspis D, Krenzelok E (1996) What happens to expired medications? A survey of community medication disposal. Vet Hum Toxicol 38:48–49

    CAS  Google Scholar 

  • Lacey C, Basha S, Morrissey A, Tobin JM (2012) Occurrence of pharmaceutical compounds in wastewater process streams in Dublin, Ireland. Environ Monit Assess 184:1049–1062. doi:10.1007/s10661-011-2020-z

    Article  CAS  Google Scholar 

  • Moreno-González R, Rodriguez-Mozaz S, Gros M, Barceló D, León VM (2015) Seasonal distribution of pharmaceuticals in marine water and sediment from a mediterranean coastal lagoon (SE Spain). Environ Res 138:326–344

    Article  Google Scholar 

  • Morgan DJ, Okeke IN, Laxminarayan R, Perencevich EN, Weisenberg S (2011) Non-prescription antimicrobial use worldwide: a systematic review. Lancet Infect Dis 11:692–701. doi:10.1016/S1473-3099(11)70054-8

    Article  Google Scholar 

  • Olutona GO, Olatunji SO, Obisanya JF (2016) Downstream assessment of chlorinated organic compounds in the bed-sediment of Aiba Stream, Iwo, South-Western, Nigeria. SpringerPlus 5 doi:10.1186/s40064-016-1664-0

  • Paiga P, Santos L, Ramos S, Jorge S, Silva JG, Delerue-Matos C (2016) Presence of pharmaceuticals in the Lis river (Portugal): sources, fate and seasonal variation. Sci Total Environ 573:164–177

    Article  CAS  Google Scholar 

  • Petrie B, Barden R, Kasprzyk-Hordern B (2015) A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Res 72:3–27. doi:10.1016/j.watres.2014.08.053

    Article  CAS  Google Scholar 

  • Qin Q, Chen XJ, Zhuang J (2015) The fate and impact of pharmaceuticals and personal care products in agricultural soils irrigated with reclaimed water. Crit Rev Environ Sci Technol 45:1379–1408. doi:10.1080/10643389.2014.955628

    Article  CAS  Google Scholar 

  • Rico A, Satapornvanit K, Haque MM, Min J, Nguyen PT, Telfer TC, van den Brink PJ (2012) Use of chemicals and biological products in Asian aquaculture and their potential environmental risks: a critical review. Rev Aquac 4:75–93. doi:10.1111/j.1753-5131.2012.01062.x

    Article  Google Scholar 

  • Samaras VG, Thomaidis NS, Stasinakis AS, Gatidou G, Lekkas TD (2010) Determination of selected non-steroidal anti-inflammatory drugs in wastewater by gas chromatography-mass spectrometry. Int J Environ Anal Chem 90:219–229. doi:10.1080/03067310903243936

    Article  CAS  Google Scholar 

  • Saravanan M, Hur JH, Arul N, Ramesh M (2014) Toxicological effects of clofibric acid and diclofenac on plasma thyroid hormones of an Indian major carp, Cirrhinus mrigala during short and long-term exposures. Environ Toxicol Pharmacol 38:948–958. doi:10.1016/j.etap.2014.10.013

    Article  CAS  Google Scholar 

  • Sarmah AK, Meyer MT, Boxall ABA (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725–759. doi:10.1016/j.chemosphere.2006.03.026

    Article  CAS  Google Scholar 

  • Shanmugam G, Sampath S, Selvaraj KK, Larsson DGJ, Ramaswamy BR (2014) Non-steroidal anti-inflammatory drugs in Indian rivers. Environ Sci Pollut Res 21:921–931. doi:10.1007/s11356-013-1957-6

    Article  CAS  Google Scholar 

  • Simmons RE, Jenkins AR (2007) Is climate change influencing the decline of Cape and Bearded Vultures in southern Africa. Vulture News 56:41–51

    Google Scholar 

  • Swan GE, Cuthbert R, Quevedo M, Green RE, Pain DJ, Bartels P, Cunningham AA, Duncan N, Meharg AA, Oaks JL, Parry-Jones J, Shultz S, Taggart MA, Verdoorn G, Wolter K (2006) Toxicity of diclofenac to Gyps vultures. Biol Lett 2:279–282

    Article  CAS  Google Scholar 

  • Thompson M, Ellison SL, Wood R (2002) Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC Technical Report). Pure Appl Chem 74:835–855

    Article  CAS  Google Scholar 

  • Trouiller P, Olliaro P, Torreele E, Orbinski J, Laing R, Ford N (2002) Drug development for neglected diseases: a deficient market and a public-health policy failure. Lancet 359:2188–2194

    Article  Google Scholar 

  • Vallecillos L, Borrull F, Pocurull E (2015) Recent approaches for the determination of synthetic musk fragrances in environmental samples. Trac-Trends Anal Chem 72:80–92. doi:10.1016/j.trac.2015.03.022

    Article  CAS  Google Scholar 

  • Varga M, Dobor J, Helenkár A, Jurecska L, Yao J, Záray G (2010) Investigation of acidic pharmaceuticals in river water and sediment by microwave-assisted extraction and gas chromatography-mass spectrometry. Microchem J 95:353–358

    Article  CAS  Google Scholar 

  • Xing HZ, Wang X, Chen XF, Wang ML, Zhao RS (2015) Accelerated solvent extraction combined with dispersive liquid-liquid microextraction before gas chromatography with mass spectrometry for the sensitive determination of phenols in soil samples. J Sep Sci 38:1419–1425. doi:10.1002/jssc.201500022

    Article  CAS  Google Scholar 

  • Zhou J, Broodbank N (2014) Sediment-water interactions of pharmaceutical residues in the river environment. Water Res 48:61–70

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported with funds from the Water Research Commission of South Africa, and bursary support from the National Research Foundation of South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick G. Ndungu.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gumbi, B.P., Moodley, B., Birungi, G. et al. Assessment of nonsteroidal anti-inflammatory drugs by ultrasonic-assisted extraction and GC-MS in Mgeni and Msunduzi river sediments, KwaZulu-Natal, South Africa. Environ Sci Pollut Res 24, 20015–20028 (2017). https://doi.org/10.1007/s11356-017-9653-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9653-6

Keywords

Navigation