Skip to main content
Log in

The generation of biogenic manganese oxides and its application in the removal of As(III) in groundwater

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The generation of biogenic manganese oxides (BMnOx) by Microbacterium sp. CSA40, and As(III) removal efficiency and mechanism by BMnOx were investigated in this study. The propagation and growth of Microbacterium sp. CSA40 was conducted in half-strength Luria Broth with 10 mg/L Mn(II), then high concentration of Microbacterium sp. CSA40 was added to PYG medium making its OD600 = 0.9 ± 0.05 for BMnOx generation. The initial Mn(II) concentrations, excessively oligotrophic condition, and pH had great influence on generation of BMnOx by Microbacterium sp. CSA40. An appropriate Mn(II) concentration (50 mg/L) was obtained for generation of BMnOx, and higher or lower Mn(II) concentration would interfere Mn(II) oxidization performance. Mn(II) oxidation ability performed best in weak alkaline conditions and would be restricted in an excessively oligotrophic condition. As(III) oxidization and As(V) adsorption proceed simultaneously by BMnOx, what is more, more than 90% of total As was removed by 0.5 g/L BMnOx. During the application process, no Mn(II) was released in the solution, that is, BMnOx retained its ability for Mn(II) oxidization caused by activity of Microbacterium sp. CSA40. Therefore, BMnOx would be a pollution-free, cost-effective, and high-efficiency material for As(III) treatment in groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abu Hasan H, Sheikh Abdullah SR, Tan Kofli N, Kamarudin SK (2012) Effective microbes for simultaneous bio-oxidation of ammonia and manganese in biological aerated filter system. Bioresour Technol 124:355–363

    Article  CAS  Google Scholar 

  • Adams L, Ghiorse WC (1987) Characterization of extracellular Mn2+−oxidizing activity and isolation of an Mn2+−oxidizing protein from Leptothrix discophora SS-1. J Bacteriol 169:1279–1285

    Article  CAS  Google Scholar 

  • Akob DM, Bohu T, Beyer A, Schäffner F, Händel M, Johnson CA, Merten D, Büchel G, Totsche KU, Küsel K (2014) Identification of Mn(II)-oxidizing bacteria from a low-pH contaminated former uranium mine. Appl Environ Microbiol 80:5086–5097

    Article  Google Scholar 

  • Aly, Osman M (1983) Chemistry of water treatment. Butterworth, 101–112 pp

  • Beyreuther E, Grafström S, Eng LM, Thiele C, Dörr K (2006) XPS investigation of Mn valence in lanthanum manganite thin films under variation of oxygen content. Phys Rev B 73:155425

    Article  Google Scholar 

  • Boonfueng T, Axe L, Yee N, Hahn D, Ndiba PK (2009) Zn sorption mechanisms onto sheathed Leptothrix discophora and the impact of the nanoparticulate biogenic Mn oxide coating. J Colloid Interface Sci 333:439–447

    Article  CAS  Google Scholar 

  • Cerrato JM, Falkinham Iii JO, Dietrich AM, Knocke WR, McKinney CW, Pruden A (2010) Manganese-oxidizing and -reducing microorganisms isolated from biofilms in chlorinated drinking water systems. Water Res 44:3935–3945

    Article  CAS  Google Scholar 

  • Chapnick SD, Moore WS, Nealson KH (1982) Microbially mediated manganese oxidation in a freshwater lake. Limnol Oceanogr 27:1004–1014

    Article  CAS  Google Scholar 

  • Dutta PK, Pehkonen S, Sharma VK, Ray AK (2005) Photocatalytic oxidation of arsenic (III): evidence of hydroxyl radicals. Environ Sci Technol 39:1827–1834

    Article  CAS  Google Scholar 

  • Fuller CC, Bargar JR (2014) Processes of zinc attenuation by biogenic manganese oxides forming in the hyporheic zone of Pinal Creek, Arizona. Environ Sci Technol 48:2165–2172

    Article  CAS  Google Scholar 

  • Furgal KM, Meyer RL, Bester K (2015) Removing selected steroid hormones, biocides and pharmaceuticals from water by means of biogenic manganese oxide nanoparticles in situ at ppb levels. Chemosphere 136:321–326

    Article  CAS  Google Scholar 

  • Guo H, Zhang D, Ni P, Cao Y, Li F (2017) Hydrogeological and geochemical comparison of high arsenic groundwaters in inland basins, PR China. Procedia Earth Planet Sci 17:416–419

    Article  Google Scholar 

  • Islam MN, Ghosh T, Chopra K, Acharya H (1996) XPS and X-ray diffraction studies of aluminum-doped zinc oxide transparent conducting films. Thin Solid Films 280:20–25

    Article  CAS  Google Scholar 

  • Iyer A, Del-Pilar J, King’ondu CK, Kissel E, Garces HF, Huang H, El-Sawy AM, Dutta PK, Suib SL (2012) Water oxidation catalysis using amorphous manganese oxides, octahedral molecular sieves (OMS-2), and octahedral layered (OL-1) manganese oxide structures. J Phys Chem C 116:6474–6483

    Article  CAS  Google Scholar 

  • Krumbein WE, Altmann HJ (1973) A new method for the detection and enumeration of manganese oxidizing and reducing microorganisms. Helgol Mar Res 25:347–356

  • Larsen EI, Sly LI, McEwan AG (1999) Manganese(II) adsorption and oxidation by whole cells and a membrane fraction of Pedomicrobium sp. ACM 3067. Arch Microbiol 171:257–264

    Article  CAS  Google Scholar 

  • Li C, Wang S, Du X, Cheng X, Fu M, Hou N, Li D (2016) Immobilization of iron- and manganese-oxidizing bacteria with a biofilm-forming bacterium for the effective removal of iron and manganese from groundwater. Bioresour Technol 220:76–84

    Article  CAS  Google Scholar 

  • LY S, La Duc MT, Grundl TJ, Nealson KH (2001) Bacterial and archaeal populations associated with freshwater ferromanganous micronodules and sediments. Environ Microbiol 3:10–18

    Article  Google Scholar 

  • Mayanna S, Peacock CL, Schäffner F, Grawunder A, Merten D, Kothe E, Büchel G (2015) Biogenic precipitation of manganese oxides and enrichment of heavy metals at acidic soil pH. Chem Geol 402:6–17

    Article  CAS  Google Scholar 

  • Meng Y-T, Zheng Y-M, Zhang L-M, He J-Z (2009) Biogenic Mn oxides for effective adsorption of Cd from aquatic environment. Environ Pollut 157:2577–2583

    Article  CAS  Google Scholar 

  • Mohora E, Rončević S, Agbaba J, Tubić A, Mitić M, Klašnja M, Dalmacija B (2014) Removal of arsenic from groundwater rich in natural organic matter (NOM) by continuous electrocoagulation/flocculation (ECF). Sep Purif Technol 136:150–156

    Article  CAS  Google Scholar 

  • Nealson KH (2006) The manganese-oxidizing bacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes: volume 5: Proteobacteria: alpha and beta subclasses. Springer New York, New York, pp 222–231

    Google Scholar 

  • Nesbitt H, Banerjee D (1998) Interpretation of XPS Mn (2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation. Am Mineral 83:305–315

    Article  CAS  Google Scholar 

  • Paul D, Kazy SK, Banerjee TD, Gupta AK, Pal T, Sar P (2015) Arsenic biotransformation and release by bacteria indigenous to arsenic contaminated groundwater. Bioresour Technol 188:14–23

    Article  CAS  Google Scholar 

  • Pei Y, Chen X, Xiong D, Liao S, Wang G (2013) Removal and recovery of toxic silver ion using deep-sea bacterial generated biogenic manganese oxides. PLoS One 8:e81627

    Article  Google Scholar 

  • Qi J, Zhang G, Li H (2015) Efficient removal of arsenic from water using a granular adsorbent: Fe–Mn binary oxide impregnated chitosan bead. Bioresour Technol 193:243–249

    Article  CAS  Google Scholar 

  • Raj AME, Victoria SG, Jothy VB, Ravidhas C, Wollschläger J, Suendorf M, Neumann M, Jayachandran M, Sanjeeviraja C (2010) XRD and XPS characterization of mixed valence Mn 3 O 4 hausmannite thin films prepared by chemical spray pyrolysis technique. Appl Surf Sci 256:2920–2926

    Article  Google Scholar 

  • Rashidi Nodeh H, Wan Ibrahim WA, Ali I, Sanagi MM (2016) Development of magnetic graphene oxide adsorbent for the removal and preconcentration of As(III) and As(V) species from environmental water samples. Environ Sci Pollut Res 23:9759–9773

    Article  CAS  Google Scholar 

  • Rosson RA, Nealson KH (1982) Manganese binding and oxidation by spores of a marine bacillus. J Bacteriol 151:1027–1034

    CAS  Google Scholar 

  • Sasaki K, Yu Q, Momoki T, Kaseyama T (2014) Adsorption characteristics of Cs+ on biogenic birnessite. Appl Clay Sci 101:23–29

    Article  CAS  Google Scholar 

  • Shih Y-J, Huang R-L, Huang Y-H (2015) Adsorptive removal of arsenic using a novel akhtenskite coated waste goethite. J Clean Prod 87:897–905

    Article  CAS  Google Scholar 

  • Shrestha RA, Lama B, Joshi J, Sillanpää M (2008) Effects of Mn(II) and Fe(II) on microbial removal of arsenic (III). Environ Sci Pollut Res 15:303–307

    Article  Google Scholar 

  • Silver S, Phung LT (2005) Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl Environ Microbiol 71:599–608

    Article  CAS  Google Scholar 

  • Sorlini S, Gialdini F (2010) Conventional oxidation treatments for the removal of arsenic with chlorine dioxide, hypochlorite, potassium permanganate and monochloramine. Water Res 44:5653–5659

    Article  CAS  Google Scholar 

  • Su J, Deng L, Huang L, Guo S, Liu F, He J (2014) Catalytic oxidation of manganese(II) by multicopper oxidase CueO and characterization of the biogenic Mn oxide. Water Res 56:304–313

    Article  CAS  Google Scholar 

  • Tanaka K, Tani Y, Takahashi Y, Tanimizu M, Suzuki Y, Kozai N, Ohnuki T (2010) A specific Ce oxidation process during sorption of rare earth elements on biogenic Mn oxide produced by Acremonium sp. strain KR21-2. Geochim Cosmochim Acta 74:5463–5477

    Article  CAS  Google Scholar 

  • Tang Y, Webb SM, Estes ER, Hansel CM (2014) Chromium(iii) oxidation by biogenic manganese oxides with varying structural ripening. Environ Sci : Processes Impacts 16:2127–2136

    CAS  Google Scholar 

  • Tani Y, Ohashi M, Miyata N, Seyama H, Iwahori K, Soma M (2004) Sorption of Co(II), Ni(II), and Zn(II) on biogenic manganese oxides produced by a Mn-oxidizing fungus, strain KR21-2. J Environ Sci Health A Tox Hazard Subst Environ Eng 39:2641–2660

    Article  Google Scholar 

  • Tebo BM, Bargar JR, Clement BG, Dick GJ, Murray KJ, Parker D, Verity R, Webb SM (2004) Biogenic manganese oxides: properties and mechanisms of formation. Annu Rev Earth Planet Sci 21:287–328

    Article  Google Scholar 

  • Tian H, Shi Q, Jing C (2015) Arsenic biotransformation in solid waste residue: comparison of contributions from bacteria with arsenate and iron reducing pathways. Environ Sci Technol 49:2140–2146

    Article  CAS  Google Scholar 

  • Toner B, Manceau A, Webb SM, Sposito G (2006) Zinc sorption to biogenic hexagonal-birnessite particles within a hydrated bacterial biofilm. Geochim Cosmochim Acta 70:27–43

    Article  CAS  Google Scholar 

  • Toyoda K, Tebo BM (2016) Kinetics of Mn(II) oxidation by spores of the marine Bacillus sp. SG-1. Geochim Cosmochim Acta 189:58–69

    Article  CAS  Google Scholar 

  • Tu J, Yang Z, Hu C, Qu J (2014a) Characterization and reactivity of biogenic manganese oxides for ciprofloxacin oxidation. J Environ Sci (China) 26:1154–1161

    Article  CAS  Google Scholar 

  • Villalobos M, Bargar J, Sposito G (2004) Mechanisms of Pb(II) sorption on a biogenic manganese oxide. Environ Sci Technol 39:569–576

    Article  Google Scholar 

  • Wang Z, Lee S-W, Kapoor P, Tebo BM, Giammar DE (2013) Uraninite oxidation and dissolution induced by manganese oxide: a redox reaction between two insoluble minerals. Geochim Cosmochim Acta 100:24–40

    Article  CAS  Google Scholar 

  • Wang Z, Bush RT, Sullivan LA, Chen C, Liu J (2014) Selective oxidation of arsenite by peroxymonosulfate with high utilization efficiency of oxidant. Environ Sci Technol 48:3978–3985

    Article  CAS  Google Scholar 

  • Wang YH, Li P, Dai XY, Zhang R, Jiang Z, Jiang DW, Wang YX (2015) Abundance and diversity of methanogens: potential role in high arsenic groundwater in Hetao plain of Inner Mongolia, China. Sci Total Environ 515–516:153–161

    Article  Google Scholar 

  • Wang Y, Xie X, Ma T, Pi K, Su C, Liu Y, Li J (2017) Remediation of high arsenic aquifers by learning from the nature. Procedia Earth Planet Sci 17:13–16

    Article  Google Scholar 

  • Watanabe J, Tani Y, Chang J, Miyata N, Naitou H, Seyama H (2013) As(III) oxidation kinetics of biogenic manganese oxides formed by Acremonium strictum strain KR21-2. Chem Geol 347:227–232

    Article  CAS  Google Scholar 

  • Weeger W, Lievremont D, Perret M, Lagarde F, Hubert J-C, Leroy M, Lett M-C (1999) Oxidation of arsenite to arsenate by a bacterium isolated from an aquatic environment. Biometals 12:141–149

    Article  CAS  Google Scholar 

  • Wright MH, Farooqui SM, White AR, Greene AC (2016) Production of manganese oxide nanoparticles by Shewanella species. Appl Environ Microbiol 82:5402–5409

    Article  CAS  Google Scholar 

  • Xu T, Cai Y, O'Shea KE (2007) Adsorption and photocatalyzed oxidation of methylated arsenic species in TiO2 suspensions. Environ Sci Technol 41:5471–5477

    Article  CAS  Google Scholar 

  • Yang J-S, Kim Y-S, Park S-M, Baek K (2014a) Removal of as(III) and as(V) using iron-rich sludge produced from coal mine drainage treatment plant. Environ Sci Pollut Res 21:10878–10889

    Article  CAS  Google Scholar 

  • Yang L, Li X, Chu Z, Ren Y, Zhang J (2014b) Distribution and genetic diversity of the microorganisms in the biofilter for the simultaneous removal of arsenic, iron and manganese from simulated groundwater. Bioresour Technol 156:384–388

    Article  CAS  Google Scholar 

  • Zaw M, Emett MT (2002) Arsenic removal from water using advanced oxidation processes. Toxicol Lett 133:113–118

    Article  CAS  Google Scholar 

  • Zhou D, Kim D-G, Ko S-O (2015) Heavy metal adsorption with biogenic manganese oxides generated by pseudomonas putida strain MnB1. J Ind Eng Chem 24:132–139

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No.413731291008712). The authors thank the editor and anonymous reviewers for their insightful comments, which strengthened this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yonghai Jiang or Yunfeng Xu.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOCX 626 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, G., Yang, Y., Wu, S. et al. The generation of biogenic manganese oxides and its application in the removal of As(III) in groundwater. Environ Sci Pollut Res 24, 17935–17944 (2017). https://doi.org/10.1007/s11356-017-9476-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9476-5

Keywords

Navigation