Skip to main content
Log in

Remediation and cytotoxicity study of polycyclic aromatic hydrocarbon-contaminated marine sediments using synthesized iron oxide–carbon composite

  • Tools, techniques and technologies for pollution prevention, control and resource recovery
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The study developed a new and cost-effective method for the remediation of marine sediments contaminated with polycyclic aromatic hydrocarbons (PAHs). Iron oxide (Fe3O4) nanoparticles were synthesized as the active component, supported on carbon black (CB), to form a composite catalyst (Fe3O4–CB) by using a wet chemical method. The oxidation of 16 PAH contaminants present in marine sediments significantly activated sodium persulfate (Na2S2O8) to form sulfate free radicals (SO4 −·); this was investigated in a slurry system. In addition, in vitro cytotoxic activity and oxidative stress studies were performed. The synthesized composite catalysts (Fe3O4–CB) were characterized using X-ray diffraction, Fourier transform infrared spectroscopy, a superconducting quantum interference device magnetometry, and environmental scanning electron microscopy. The efficiency of PAH removal was 39–63% for unactivated persulfate (PS) from an initial dose of 1.7 × 10−7–1.7 × 10−2 M. The removal of PAHs was evaluated using Fe3O4/PS, CB/PS, and Fe3O4/PS and found to be 75, 64, and 86%, respectively, at a temperature of 303 K, PS concentration of 1.7 × 10−5 M, and pH of 6.0. An MTT assay was used to assess the cytotoxicity of the composite catalyst at five concentrations (25, 50, 100, 200, and 400 μg/mL) on human hepatoma carcinoma (HepG2) cells for 24 h. This revealed a dose-dependent decrease in cell viability. A dichlorofluorescein diacetate assay was performed to evaluate the generation of reactive oxygen species, which principally originated from the ferrous ions of the composite catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Auffan M, Achouak W, Rose J, Roncato MM, Chanéac C, Waite DT, Masion A, Woicik JC, Wiesner MR, Bottero JY (2008) Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ Sci Technol 42:6730–6735

    Article  CAS  Google Scholar 

  • Alderman NS, N’Guessan AL, Nyman MC (2007) Effective treatment of PAH contaminated superfund site soil with the peroxy-acid process. J Hazard Mater 146:652–660

    Article  Google Scholar 

  • Berg JM, Ho S, Hwang W, Zebd R, Cummins K, Soriaga MP, Taylor R, Guo B, Sayes CM (2010) Internalization of carbon black and maghemite iron oxide nanoparticle mixtures leads to oxidant production. Chem Res Toxicol 37:1874–1882

    Article  Google Scholar 

  • Bogan BW, Trbovic V (2003) Effect of sequestration on PAH degradability with Fenton’s reagent: roles of total organic carbon, humin, and soil porosity. J Hazard Mater B100:285–300

    Article  Google Scholar 

  • Chen ML, He YJ, Chen XW, Wang JH (2011) Quantum dots conjugated with Fe3O4-filled carbon nanotubes for cancer-targeted imaging and magnetically guided drug deliver. Langmuir 28:16469–16476

    Article  Google Scholar 

  • Chiavola A, Baciocchi R, Gavasci R (2010) Biological treatment of PAH-contaminated sediments in a sequencing batch reactor. J Hazard Mater 184:97–104

    Article  CAS  Google Scholar 

  • Darroudi M, Hakimi M, Goodarzi E, Oskuee RK (2014) Superparamagnetic iron oxide nanoparticles (SPIONs): green preparation, characterization and their cytotoxicity effects. Ceram Int 40:14641–14645

    Article  CAS  Google Scholar 

  • Dissanayake NM, Current KM, Obare SO (2015) Mutagenic effects of iron oxide nanoparticles on biological cells. Int J Mol Sci 16:23482–23516

    Article  CAS  Google Scholar 

  • Dong P, Maneerung T, Ng WC, Zhen X, Dai Y, Tong YW, Ting YP, Koh SN, Wang CH, Neoh KG (2017) Chemically treated carbon black waste and its potential applications. J Hazard Mater 321:62–72

    Article  CAS  Google Scholar 

  • Dwivedi S, Siddiqui MA, Farshori NN, Ahamed M, Musarrat J, Al-Khedhairy AA (2014) Synthesis, characterization and toxicological evaluation of iron oxide nanoparticles in human lung alveolar epithelial cells. Colloids Surf B Biointerfaces 122:209–215

    Article  CAS  Google Scholar 

  • Fard AE, Zarepour A, Zarrabi A, Shanei A, Salehi H (2015) Synergistic effect of the combination of triethylene-glycol modified Fe3O4 nanoparticles and ultrasound wave on MCF-7 cells. J Magn Magn Mater 394:44–49

    Article  Google Scholar 

  • Ferrarese E, Andreottola G, Oprea IA (2008) Remediation of PAH-contaminated sediments by chemical oxidation. J Hazard Mater 152:128–139

    Article  CAS  Google Scholar 

  • Gan S, Lau EV, Ng HK (2009) Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). J Hazard Mater 172:532–549

    Article  CAS  Google Scholar 

  • Guo Y, Zeng Z, Li Y, Huang Z, Yang J (2017) Catalytic oxidation of 4-chlorophenol on in-situ sulfur-doped activated carbon with sulfate radicals. Sep Purif Technol 179:257–264

    Article  CAS  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15

    Article  CAS  Google Scholar 

  • Herzog E, Casey A, Lyng FM, Chambers G, Byrne HJ, Davoren M (2007) A new approach to the toxicity testing of carbon-based nanomaterials—the clonogenic assay. Toxicol Lett 174:49–60

    Article  CAS  Google Scholar 

  • Hong G, Diao S, Antaris AL, Dai H (2015) Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem Rev 115:10816–10906

    Article  CAS  Google Scholar 

  • Hu X, Cook S, Wang P, Hwang H (2009) In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles. Sci Total Environ 407:3070–3072

    Article  CAS  Google Scholar 

  • Hung CM, Chen CW, Jhuang YJ, Dong CD (2016) Fe3O4 magnetic nanoparticles: characterization and performance exemplified by the degradation of methylene blue in the presence of persulfate. J Adv Oxid Technol 19:43–51

    CAS  Google Scholar 

  • Jonsson S, Persson Y, Frankki S, van Bavel B, Lundstedt S, Haglund P, Tysklind M (2007) Degradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soils by Fenton’s reagent: a multivariate evaluation of the importance of soil characteristics and PAH properties. J Hazard Mater 149:86–96

    Article  CAS  Google Scholar 

  • Jung KW, Choi BH, Jeong TU, Ahn KH (2016) Facile synthesis of magnetic biochar/Fe3O4 nanocomposites using electro-magnetization technique and its application on the removal of acid orange 7 from aqueous media. Bioresour Technol 220:672–676

    Article  CAS  Google Scholar 

  • Kong L, Lu X, Bian X, Zhang W, Wang C (2011) Constructing carbon-coated Fe3O4 microspheres as antiacid and magnetic support for palladium nanoparticles for catalytic applications. ACS Appl Mater Interfaces 3:35–42

    Article  CAS  Google Scholar 

  • Könczöl M, Weiss A, Stangenberg E, Gminski R, Garcia-Käufer M, Gieré R, Merfort I, Mersch-Sundermann V (2013) Cell-cycle changes and oxidative stress response to magnetite in A549 human lung cells. Chem Res Toxicol 26:693–702

    Article  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 32:2064–2110

    Article  Google Scholar 

  • Lee N, Yoo D, Ling D, Cho MH, Hyeon T, Cheon J (2015) Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem Rev 115:10637–10689

    Article  CAS  Google Scholar 

  • Li H, Qu R, Li C, Guo W, Han X, He F, Ma Y, Xing B (2014) Selective removal of polycyclic aromatic hydrocarbons (PAHs) from soil washing effluents using biochars produced at different pyrolytic temperatures. Bioresour Technol 163:193–198

    Article  CAS  Google Scholar 

  • Li H, Wan J, Ma Y, Wang Y (2016) Synthesis of novel core-chell Fe0@Fe3O4 as heterogeneous activator of persulfate for oxidation of dibutyl phthalate under neutral conditions. Chem Eng J 301:315–324

    Article  CAS  Google Scholar 

  • Li CH, Wong YS, Tam NFY (2010) Anaerobic biodegradation of polycyclic aromatic hydrocarbons with amendment of iron (III) in mangrove sediment slurry. Bioresour Technol 101:8083–8092

    Article  CAS  Google Scholar 

  • Lin CH, Chen SJ, Huang KL, Lee WJ, Lin WY, Tsai JH, Chaung HC (2008) PAHs, PAH-induced carcinogenic potency, and particle-extract-induced cytotoxicity of traffic-related nano/ultrafine particles. Environ Sci Technol 42:4229–4235

    Article  CAS  Google Scholar 

  • Liao X, Zhao D, Yan X, Huling SG (2014) Identification of persulfate oxidation products of polycyclic aromatic hydrocarbon during remediation of contaminated soil. J Hazard Mater 276:26–34

    Article  CAS  Google Scholar 

  • Lowry GV, Gregory KB, Apte SC, Lead JR (2012) Transformations of nanomaterials in the environment. Environ Sci Technol 46:6893–6899

    Article  CAS  Google Scholar 

  • Lu XY, Li B, Zhang T, Fang HHP (2012) Enhanced anoxic bioremediation of PAHs-contaminated sediment. Bioresour Technol 104:51–58

    Article  CAS  Google Scholar 

  • Mohammadi Z, Cole A, Berkland CJ (2009) In situ synthesis of iron oxide within polyvinylamine nanoparticle reactors. J Phys Chem C 113:7652–7658

    Article  CAS  Google Scholar 

  • Monteiro-Riviere NA, Inman AO (2006) Challenges for assessing carbon nanomaterial toxicity to the skin. Carbon 44:1070–1078

    Article  CAS  Google Scholar 

  • Mu Q, Jiang G, Chen L, Zhou H, Fourchex D, Tropsha A, Yan B (2014) Chemical basis of interactions between engineered nanoparticles and biological systems. Chem Rev 114:7740–7781

    Article  CAS  Google Scholar 

  • Ni SQ, Ni J, Yang N, Wang J (2013) Effect of magnetic nanoparticles on the performance of activated sludge treatment system. Bioresour Technol 143:555–561

    Article  CAS  Google Scholar 

  • Pazos M, Rosales E, Alcantara T, Gómez J, Sanromán MA (2010) Decontamination of soils containing PAHs by electroremediation: a review. J Hazard Mater 177:1–11

    Article  CAS  Google Scholar 

  • Peng X, Yu H, Ai L, Li N, Wang X (2013) Time behavior and capacitance analysis of nano-Fe3O4 added microbial fuel cells. Bioresour Technol 144:689–692

    Article  CAS  Google Scholar 

  • Seabra AB, Pasquôto T, Ferrarini ACF, Santos M da C, Haddad PS, de Lima R (2014) Preparation, characterization, cytotoxicity, and genotoxicity evaluations of thiolated- and S-nitrosated superparamagnetic iron oxide nanoparticles: implications for cancer treatment. Chem Res Toxicol 27:1207–1218

    Article  CAS  Google Scholar 

  • Sherafatmand M, Ng HY (2015) Using sediment microbial fuel cells (SMFCs) for bioremediation of polycyclic aromatic hydrocarbons (PAHs). Bioresour Technol 195:122–130

    Article  CAS  Google Scholar 

  • Sinha R, Karan R, Sinha A, Khare SK (2011) Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells. Bioresour Technol 102:1516–1520

    Article  CAS  Google Scholar 

  • Spasojević JM, Maletić SP, Rončević SD, Radnović DV, Radnović DV, Čučak DI, Tričković JS, Dalmacija BD (2015) Using chemical desorption of PAHs from sediment to model biodegradation during bioavailability assessment. J Hazard Mater 283:60–69

    Article  Google Scholar 

  • Xuan S, Wang F, Lai JMY, Sham KWY, Wang YXJ, Lee SF, Yu JC, Cheng CHK, Leung KCF (2011) Synthesis of biocompatible, mesoporous Fe3O4 nano/microspheres with large surface area for magnetic resonance imaging and therapeutic applications. ACS Appl Mater Interfaces 3:237–244

    Article  CAS  Google Scholar 

  • Zhao D, Liao X, Yan X, Huling SG, Chai T, Tao H (2013) Effect and mechanism of persulfate activated by different methods for PAHs removal in soil. J Hazard Mater 254-255:228–235

    Article  CAS  Google Scholar 

  • Zhen G, Lu X, Zhao Y, Chai X, Niu D (2012) Enhanced dewaterability of sewage sludge in the presence of Fe(II)-activated persulfate oxidation. Bioresour Technol 116:259–265

    Article  CAS  Google Scholar 

  • Zhou H, Tao K, Ding J, Zhang Z, Sun K, Shi W (2011) A general approach for providing nanoparticles water-dispersibility by grinding with poly (ethylene glycol). J Colloid Interface Sci 389:18–26

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Ministry of Science and Technology of Taiwan, for the financial support to perform this study under contract nos. MOST 103-2221-E-022-001-MY3 and 103-2221-E-022-002-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Mao Hung.

Additional information

Responsible editor: Philippe Garrigues

Revised manuscript resubmitted for publication in Environmental Science and Pollution Research

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, CD., Tsai, ML., Chen, CW. et al. Remediation and cytotoxicity study of polycyclic aromatic hydrocarbon-contaminated marine sediments using synthesized iron oxide–carbon composite. Environ Sci Pollut Res 25, 5243–5253 (2018). https://doi.org/10.1007/s11356-017-9354-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9354-1

Keywords

Navigation