Skip to main content
Log in

Removal of Cr(VI) by surfactant modified Auricularia auricula spent substrate: biosorption condition and mechanism

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Auricularia auricula spent substrate (AASS) modified by didodecyldimethylammonium bromide(DDAB) was used as adsorbent to remove Cr(VI) from aqueous solution. Based on a single-factor experiment and response surface methodology, the optimal conditions were adsorbent dosage of 1.5 g/L, pH value of 4.0, initial Cr(VI) concentration of 19 mg/L, temperature of 25 °C, biosorption time of 120 min, rotational speed of 150 r/min, respectively, under which biosorption capacity could reach 12.16 mg/g compared with unmodified AASS (6.058 mg/g). DDAB modification could enlarge the specific surface area and porous diameter of the adsorbents, and supply hydrophilic and hydrophobic groups capable of adsorbing at the interfaces. In addition, DDAB increased ionic exchange and complex formation demonstrated by variations of elemental contents, shifts of carboxyl, amine groups, hydroxyl, alkyl chains, and phosphate groups as well as the crystal structure of the Cr-O compounds. Variations of peaks and energy in XPS analysis also testified the reduction of Cr(VI) to Cr(III).The biosorption behavior of modified AASS was in line with Langmuir and Freundlich isotherm equation. The final regeneration efficiency was 62.33% after three biosorption-desorption cycles. Apparently, DDBA is a eximious modifier and DDBA-modified AASS was very efficient for Cr(VI) removal.−

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Akar ST, Arslan D, Aka T (2012) Biosorption potential of the waste biomaterial obtained from Cucumis melo for the removal of Pb2+ ions from aqueous media: equilibrium, kinetic, themodynamic and mechanism analysis. Chem Eng J 185(15):82–90

    Article  Google Scholar 

  • Akar E, Altinisik A, Seki Y (2013) Using of activated carbon produced from spent tea leaves for the removal of malachite green from aqueous solution. Ecol Eng 52:19–27

    Article  Google Scholar 

  • Arivoli S, Hema M, Karuppaiah M, Saravanan S (2008) Adsorption of chromium ion by acid activated low cost carbon-kinetic, mechanistic, thermodynamic and equilibrium studies. J Chem 4:820–831

    Google Scholar 

  • Babu BV, Gupta S (2008) Adsorption of Cr(VI) using activated neem leaves: kinetic studies. Adsorption 14:85–92

    Article  CAS  Google Scholar 

  • Baek K, Yang JW (2004) Simultaneous removal of chlorinated aromatic hydrocarbon, nitrate, and chromate using micellar-enhanced ultrafiltration. Chemosphere 57:1091–1097

    Article  CAS  Google Scholar 

  • Bertazzoli R, Rosivania CW, Lanza RV et al (1997) Electrolytic removal of metals using a flow-through cell with a reticulated vitreous carbon cathode. J Braz Chem Soc 8:487–492

    Article  CAS  Google Scholar 

  • Beveridge T, Murray R (1980) Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol 141(2):876–887

    CAS  Google Scholar 

  • Boddu VM, Abburi K, Talboot JL et al (2008) Removal of arsenic (III) and arsenic (V) from aqueous medium using chitosan-coated adsorbent. Water Res 42(3):633–642. doi:10.1016/j.watres.2007.08.014

    Article  CAS  Google Scholar 

  • Bueno BYM, Torem ML, Molina F et al (2008) Biosorption of lead(II), chromium(III) and copper(II) by R. opacus: equilibrium and kinetic studies. Miner Eng 21:65

    Article  CAS  Google Scholar 

  • Cadaval TRS, Camara AS, Dotto GL et al (2013) Biosorption of Cr (VI) by chitosan with different deacetylation degrees. Desalin Water Treat 51:7690–7699

    Article  Google Scholar 

  • Chen DM, Chen J, Luan XL et al (2011a) Characterization of anion-cationic surfactants modified montmorillonite and its application for the removal of methyl orange. Chem Eng J 171:1150–1158

    Article  CAS  Google Scholar 

  • Chen SH, Yue OY, Gao BY et al (2011b) Biosorption of hexavalent chromium from aqueous solution by modified cornstalk: a fixed-bed column study. Bioresour Technol 113:114–120

    Article  Google Scholar 

  • China Environmental Protection Bureau (CEPB) (2008) Discharge standard of pollutants for chrome and its compounds industry. Recommendations

  • Choi HD, Jung WS, Cho JM et al (2009) Biosorption of Cr(VI) onto cationic surfactant-modified activated carbon. J Hazard Mater 166:642–646

    Article  CAS  Google Scholar 

  • Feng D, Aldrich C, Tan H (2000) Treatment of acid mine water by use of heavy metal precipitation and ion exchange. Miner Eng 13(6):623–642

    Article  CAS  Google Scholar 

  • Frantz TS, Silveira N, Quadro MS et al (2017) Cu(II) adsorption from copper mine water by chitosan films and the matrix effects. Environ Sci Pollut Res 24:5908–5917

    Article  CAS  Google Scholar 

  • Freundlich H (1939) Adsorption in solution. J Am Chem Soc 61:2–28

    Article  Google Scholar 

  • Fu X, Qutubuddin S (2001) Polymer-clay nanocomposites: exfoliation of organophilic montmorillonite nanolayers in polystyrene. Polymer 42:807–813

    Article  CAS  Google Scholar 

  • Garg VK, Gupta R, Yadav AB, Kumar RD (2003) Dye removal from aqueous solution by biosorption on treated sawdust. Bioresour Technol 89(2):121–124

    Article  CAS  Google Scholar 

  • Garg UK, Kaur MP, Garg VK et al (2007) Removal of hexavalent chromium from aqueous solution by agricultural waste biomass. J Hazard Mater 140(1–2):60–68

    Article  CAS  Google Scholar 

  • Ghanem NB, Yusef HH, Mahrouse HK (2000) Production of Aspergillus terreus xylanase in solid-state cultures: application of the Plackett-Burman experimental design to evaluate nutritional requirements. Bioresour Technol 73(2):113–121

    Article  CAS  Google Scholar 

  • Grimm A, Zanzi R, Bjornbom E et al (2008) Comparison of different types of biomasses for copper biosorption. Bioresour Technol 9(7):2559–2565

    Article  Google Scholar 

  • Han JG, Lee JU, Hong KK et al (2010) Biosorption characteristics of Cu2+ and Zn2+ from aqueous solution using carbonized food waste. J Mater Cycles Waste 12:227–234. doi:10.1007/s10163-010-0292-y

    Article  CAS  Google Scholar 

  • Hu XJ, Gu HD, Zang TT et al (2014) Biosorption mechanism of Cu2+ by innovative immobilized spent substrate of fragrant mushroom biomass. Ecol Eng 73:509–513

    Article  Google Scholar 

  • Inbaraj BS, Sulochana N (2006) Mercury biosorption on a carbon sorbent derived from fruit shell of Terminalia catappa. J Hazard Mater 133:283–290

    Article  CAS  Google Scholar 

  • Jalali-Rad R, Ghafourian H, Asef Y et al (2004) Biosorption of cesium by native and chemically modified biomass of marine algae: introduce the new biosorbents for biotechnology applications. J Hazard Mater 116:125

    Article  CAS  Google Scholar 

  • Javaid A, Bajwa R, Shafiqu U, Anwar J (2011) Removal of heavy metals by biosorption on Pleurotus ostreatus. Biomass Bioenergy 35(5):1675–1682

    Article  CAS  Google Scholar 

  • Karatepe A, Korkmaz E, Soylak M et al (2010) Development of a coprecipitation system for the speciation/preconcentration of chromium in tap waters. J Hazard Mater 173(1–3):433–437

    Article  CAS  Google Scholar 

  • Kazy SK, Sar P, Sen AK, Singh SP et al (2002) Extracellular polysaccharides of a copper-sensitive and a copper-resistant Pseudomonas aeruginosa strain: synthesis, chemical nature and copper binding. World J Microbiol Biotechnol 18:583–588

    Article  CAS  Google Scholar 

  • Kazy SK, Das SK, Sar P (2006) Lanthanum biosorption by a Pseudomonas sp.: equilibrium studies and chemical characterization. J Ind Microbiol Biotechnol 33:773–783. doi:10.1007/s10295-006-0108-1

    Article  CAS  Google Scholar 

  • Khalfa L, Cervera ML, Bagane M et al (2016) Modeling of equilibrium isotherms and kinetic studies of Cr (VI) biosorption into natural and acid-activated clays. Original paper 9:75

    Google Scholar 

  • Khormaei M, Nasemejad B et al (2007) Copper biosorption from aqueous solutions by sour orange residues. J Hazard Mater 149(2):269–274

    Article  CAS  Google Scholar 

  • Kiran B, Kaushik A, Kaushik CP (2007) Response surface methodological approach for optimizing removal of Cr (VI) from aqueous solution using immobilized cyanobacterium. Chem Eng J 126(23):147–153

    Article  CAS  Google Scholar 

  • Klimmek S, Stan HJ (2001) Comparative analysis of the biosorption of cadmium, lead, nickel and zinc by algae. Environ Sci Technol 35(21):4283–4288

    Article  CAS  Google Scholar 

  • Kumar NK, Reddy DSR, Venkateswarlu P (2010) Application of response surface methodology for optimization of chromium biosorption from an aqueous solution onto Syzigium cumini (java) seed powder. Microbial Biochem Technol 2:1

    Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surface of glass, mica, and platinum. J Amer Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  • Li JY, Shukla SS, Kenneth LD et al (2003) Adsorption of chromium from aqueous solutions by maple sawdust. J Hazard Mater 100:53–63

    Article  Google Scholar 

  • Li XM, Tang YR, Xuan ZX et al (2007) Study on the preparation of orange peel cellulose adsorbents and biosorption of Cd2+ from aqueous solution. Sep Purif Technol 155:69–75

    Article  Google Scholar 

  • Li XS, Liu SL, Na ZY et al (2013) Biosorption, concentration, and recovery of aqueous heavy metal ions with the root powder of Eichhornia crassipes. Ecol Eng 60:160–166

    Article  CAS  Google Scholar 

  • Liu X, Su W, Lu Z et al (2000) Mixed valence state and electrical conductivity of La1-x Sr x CrO3. J Alloy Compd 305:21

    Article  CAS  Google Scholar 

  • Mahmood-ul-Hassa NM, Suthor V, Rafique E et al (2015) Removal of Cd, Cr, and Pb from aqueous solution by unmodified and modified agricultural wastes. Environ Monit Assess 187:19

    Article  Google Scholar 

  • Maleki A, Hayati B, Naghizadeh M et al (2015) Biosorption of hexavalent chromium by metal organic frameworks from aqueous solution. J Ind Eng Chem 28:211–216

    Article  CAS  Google Scholar 

  • Malkoc E, Nuhoglu Y, Dundar M (2006) Biosorption of chrom(VI) on pomace—an olive oil industry waste: batch and column studies. J Hazard Mater 138:142–151

    Article  CAS  Google Scholar 

  • Manning BA, Kiser JR, Kwon H, Kanel SR (2006) Spectroscopic investigation of Cr(III)- and Cr(VI)-treated nanoscale zerovalent iron. Environ Sci Technol 41:586–592

    Article  Google Scholar 

  • Nagy B, Maicaneanu A, Indolean C et al (2013) Comparative study of Cd(II) biosorption on cultivated Agaricus bisporus and wild Lactarius piperatus based biocomposites. Linear and nonlinear equilibrium modelling and kinetics. J Taiwan Inst Chem E 45(3):921–929

    Article  Google Scholar 

  • Naja G, Mustin C, Berthelin J et al (2005) Lead biosorption study with Rhizopus arrhizus using a metal-based titration technique. J Colloid Interf Sci 292:537–543

    Article  CAS  Google Scholar 

  • Namasivayam C, Kadirvelu K (1999) Uptake of mercury(II) from wastewater by activated carbon from an unwanted agricultural solid by-product: coirpith. Carbon 37:79–84

    Article  CAS  Google Scholar 

  • Onundi YB, Mamun AA, Khatib MF, Ahmed YM (2010) Biosorption of copper, nickel and lead ions from synthetic semiconductor industrial wastewater by palm shell activated carbon. Int J Environ Sci Tech 7(4):751–758

    Article  CAS  Google Scholar 

  • Park D, Yun YS, Jo JH, Park JM (2006) Biosorption process for treatment of electroplating wastewater containing Cr (VI): laboratory-scale feasibility test. Ind Eng Chem Res 45:5059–5065

    Article  CAS  Google Scholar 

  • Park D, Yun YS, Park JM (2008) XAS and XPS studies on chromium-binding groups of biomaterial during Cr(VI) biosorption. J Colloid Interf Sci 317:54

    Article  CAS  Google Scholar 

  • Pavan FA, Lima IS, Lima EC et al (2006) Use of Ponkan mandarin peels as biosorbent for toxic metals uptake from aqueous solutions. J Hazard Mater 137(1):527–533

    Article  CAS  Google Scholar 

  • Pels JR, Kapteijn F, Moulijn JA et al (1995) Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon 33:1641

    Article  CAS  Google Scholar 

  • Ramrakhiani L, Majumder R, Khowala S (2011) Removal of hexavalent chromium by heat inactivated fungal biomass of Termitomyces clypeatus: surface characterization and mechanism of biosorption. Chem Eng J 171:1060–1068

    Article  CAS  Google Scholar 

  • Rastogi NK, Rashmi KR (1999) Optimization of enzymatic liquefaction of mango pulp by response surface methodology. Eur Food Res Technol 209:57–62

    Article  CAS  Google Scholar 

  • Ren HX, Jiang JH, Wu DJ et al (2016) Selective biosorption of Pb(II) and Cr(VI) by surfactant-modified and unmodified natural zeolites: a comparative study on kinetics, equilibrium, and mechanism. Water Air Soil Pollut 227:101. doi:10.1007/s11270-016-2790-6

    Article  Google Scholar 

  • Schmitt J, Flemming HC (1998) FTIR-spectroscopy in microbial and material analysis. Int Biodeterior Biodegrad Sci 41:1–11

    Article  CAS  Google Scholar 

  • Schroden RC, Al-Daous M, Sokolov S et al (2002) Hybrid macroporous materials for heavy metal ion biosorption. J Mater Chem 12:3261–3267

    Article  CAS  Google Scholar 

  • Shroff KA, Vaidya VK (2011) Kinetics and equilibrium studies on biosorption of nickel from aqueous solition by dead fungal biomass of Mucor hiemalis. Chem Eng J 171(3):1234–1245

    Article  CAS  Google Scholar 

  • Sud D, Mahajan G, Kaur MP (2008) Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solution a review. Bioresour Technol 99(14):6017–6027

    Article  CAS  Google Scholar 

  • Sujatha P, Kalarani V, Naresh Kumar B (2013) Effective biosorption of nickel(II) from aqueous solutions using Trichoderma viride. J Chem doi: 10.1155/2013/716098

  • Uçer A, Uyanık A, Aygün SF (2006) Adsorption of Cu (II), Cd(II), Zn(II), Mn(II) and Fe(III) ions by tannic acid immobilised activated carbon. Sep Purif Technol 47:113–118

    Article  Google Scholar 

  • USEPA (2011) Ground water and drinking water, current drinking water standards, EPA 816-F-02

  • Uysal M, Ar I (2007) Removal of Cr(VI) from industrial wastewaters by biosorption part I: determination of optimum conditions. J Hazard Mater 149(2):482–491

    Article  CAS  Google Scholar 

  • Vaca MM, Lopez CR, Gehr R et al (2001) Heavy metal removal with mexican clinoptilolite multi-component ionic exchange. Water Res 35(2):373–378

    Article  Google Scholar 

  • Vankar PS, Sarswat R, Dwivedi AK et al (2013) An assessment and characterization for biosorption efficiency of natural dye waste. J Clean Prod 60:65–70

    Article  CAS  Google Scholar 

  • Walde P (2006) Surfactant assemblies and their various possible roles for the origin(s) of life. Orig Life Evol Biosph 36:109–150. doi:10.1007/s11084-005-9004-3

    Article  CAS  Google Scholar 

  • Wang J, Deng BL, Wang XR et al (2009) Biosorption of aqueous Hg(II) by sulfur-impregnated activated carbon. Environ Eng Sci 26(12):1693–1699

    Article  CAS  Google Scholar 

  • Wartelle LH, Marshall WE (2005) Chromate ion biosorption by agricultural byproducts modified with dimethyloldihydroxyethylene urea and choline chloride. Water Res 39:2869–2876

    Article  CAS  Google Scholar 

  • Watts MP, Coker VS, Parry SA et al (2015) Effective treatment of alkaline Cr(VI) contaminated leachate using a novel Pd-bionanocatalyst: impact of electron donor and aqueous geochemistry. Appl Catal B Environ 170-171:162–172

    Article  CAS  Google Scholar 

  • World Health Organization (WHO) (2004) Guidelines for drinking water quality, vol 1, 3rd edn. Recommendations, Geneva, 334

  • Zhang ZZ, Sparks DL, Scrivner NC (1993) Sorption and desorption of quaternary amine cations on clays. Environ Sci Technol 27(8):1625–1631

    Article  CAS  Google Scholar 

  • Zheng Y, Fang X, Ye Z et al (2008) Biosorption of Cu (II) on extracellular polymers from Bacillus sp. F19. J Environ Sci 20:1288–1293

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Liying Dong and Yu Jin contributed equally to this work. This research was financially supported by the Natural Science Foundation of Heilongjiang Province, China (Grant No. D201402 and D2016001). This research was also supported by the research project of the Post-doctoral Mobile Station Ecology, Northeast Agricultural University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juanjuan Qu or Xiaomei Huang.

Additional information

Responsible editor: Guilherme L. Dotto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, L., Jin, Y., Song, T. et al. Removal of Cr(VI) by surfactant modified Auricularia auricula spent substrate: biosorption condition and mechanism. Environ Sci Pollut Res 24, 17626–17641 (2017). https://doi.org/10.1007/s11356-017-9326-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9326-5

Keywords

Navigation