Skip to main content

Advertisement

Log in

The effect of iron nanoparticles on performance of cognitive tasks in rats

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

To assess the influence of 62.5 ± 0.6 nm iron nanoparticles on the status of central nervous system, a study was conducted on Wistar rats, which were subjected to abdominal injection of the studied nanoparticles at doses of 2 and 14 mg/kg. Based on the analysis of the structural and functional status of the cerebral cortex of rats, behavioral reactions of animals, and the elemental composition of the cerebral cortex, we investigated the nanoparticles’ neurotoxic effect, whose degree and nature varied depending on the dosage and the time elapsed after the injection. We identified pathological changes in motor and somatosensory areas of the rats’ cerebral cortex and established pronounced changes in the elemental homeostasis of the animals’ cerebral cortex in experimental groups. Identified structural changes were accompanied by an increase in exploratory activity, locomotor activity, and emotional status of the animals. At that, these activities were more pronounced in rats, which were administered iron nanoparticles at a dose of 14 mg/kg. By the end of the experiment, the excitation processes prevailed over the inhibition processes that have led to the inhibition of central nervous system activity in experimental animals against the adaptation to stress in rats of the control group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arbab AS, Yocum GT, Kalish H et al (2004) Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood 104:1217–1223

    Article  CAS  Google Scholar 

  • Barbu E, Molnar E, Tsibouklis J, Gorecki DC (2009) The potential for nanoparticle-based drug delivery to the brain: overcoming the blood–brain barrier. Expert Opin Drug Deliv 6(6):553–565

    Article  CAS  Google Scholar 

  • Blanco-Alvarez VM, Soto-Rodriguez G, Gonzalez-Barrios JA, Martinez-Fong D, Brambila E, Torres-Soto M, Aguilar-Peralta AK, Gonzalez-Vazquez A, Tomás-Sanchez C, Limón ID, Eguibar JR, Ugarte A, Hernandez-Castillo J, Leon-Chavez BA (2015) Prophylactic subacute administration of zinc increases CCL2, CCR2, FGF2, and IGF-1 expression and prevents the long-term memory loss in a rat model of cerebral hypoxia-ischemia. Neural Plast pp:375–391

  • Brioschi A, Zenga F, Zara GP, Gasco MR, Ducati A, Mauro A (2007) Solid lipid nanoparticles: could they help to improve the efficacy of pharmacologic treatments for brain tumors? Neurol Res 29(3):324–330

    Article  CAS  Google Scholar 

  • Chatterjee DK, Diagaradjane P, Krishnan S (2011) Nanoparticle-mediated hyperthermia in cancer therapy. Ther Deliv 2(8):1001–1014

    Article  CAS  Google Scholar 

  • Crosera M, Bovenzi M, Maina G, Adami G, Zanette C et al (2009) Nanoparticle dermal absorption and toxicity: a review of the literature. Int Arch Occup Environ Health 82:1043–1055

    Article  CAS  Google Scholar 

  • Dominguez A, Suarez-Merino B, Goni-de-Cerio F (2014) Nanoparticles and blood–brain barrier: the key to central nervous system diseases. J Nanosci Nanotechnol 14(1):766–779

    Article  CAS  Google Scholar 

  • Garcia-Garcia E, Andrieux K, Gil S, Couvreur P (2005) Colloidal carriers and blood-brain barrier (BBB) translocation: a way to deliver drugs to the brain? Int J Pharm 298:274–292

    Article  CAS  Google Scholar 

  • Geier DA, Kern JK, King PG, Sykes LK, Geier MR (2012) Hair toxic metal concentrations and autism spectrum disorder severity in young children. Int J Environ Res Public Health 9(12):4486–4497. doi:10.3390/ijerph9124486

    Article  Google Scholar 

  • Gossuin Y, Gillis P, Hocq A, Vuong QL, Roch A (2009) Magnetic resonance relaxation properties of superparamagnetic particles. Wiley Interdisciplinary Reviews 1(3):299–310

    CAS  Google Scholar 

  • Hasan DM, Amans M, Tihan T et al (2012) Ferumoxytol-enhanced MRI to image inflammation within human brain arteriovenous malformations: a pilot investigation. Transl Stroke Res 3(1):166–173

    Article  Google Scholar 

  • Hill DS, Cabrera R, Schultz DW, Zhu H, Lu W, Finnell RH, Wlodarczyk BJ (2015) Autism-like behavior and epigenetic changes associated with autism as consequences of in utero exposure to environmental pollutants in a mouse model. Behav Neurol 426263. doi:10.1155/2015/426263

  • Huang J, Xie J, Chen K et al (2010) HSA coated MnO nanoparticles with prominent MRI contrast for tumor imaging. Chem Commun 46(36):6684–6686

    Article  CAS  Google Scholar 

  • Jung S, Bang M, Kim BS, Lee S, Kotov NA, Kim B, Jeon D (2014) Intracellular gold nanoparticles increase neuronal excitability and aggravate seizure activity in the mouse brain. PLoS One 9(3):e91360

    Article  Google Scholar 

  • Kokaeva FF (2006) Povedenie kak kriterij porazhayushchego dejstviya tekhnogennyh zagryaznenij sredy na organizm zhivotnyh i ehffektivnosti mer korrekcii [Behavior as a criterion of the harmful effect of technogenic pollutions of environment on the organism of animals and the effectiveness of correction measures]. Higher Doctorate thesis, Moscow. p. 32

  • Koziara JM, Lockman PR, Allen DD, Mumper RJ (2003) In situ blood-brain barrier transport of nanoparticles. Pharm Res 20:1772–1778

    Article  CAS  Google Scholar 

  • Krishnan KM (2010) Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans Magn 46:2523–2558

    Article  CAS  Google Scholar 

  • Lelie HL, Liba A, Bourassa MW, Chattopadhyay M, Chan PK, Gralla EB et al (2011) Copper and zinc metallation status of copper-zinc superoxide dismutase from amyotrophic lateral sclerosis transgenic mice. J Biol Chem 286:2795–2806

    Article  CAS  Google Scholar 

  • Li T, Shi T, Li X, Zeng S, Yin L, Pu Y (2014) Effects of nano-MnO2 on dopaminergic neurons and the spatial learning capability of rats. Int J Environ Res Public Health 11(8):7918–7930

    Article  CAS  Google Scholar 

  • Liu Z, Ren G, Zhang T, Yang Z (2009) Action potential changes associated with the inhibitory effects on voltage-gated sodium current of hippocampal CA1 neurons by silver nanoparticles. Toxicology 264:179–184

    Article  CAS  Google Scholar 

  • Lockman PR, Koziara JM, Mumper RJ, Allen DD (2004) Nanoparticle surface charges alter blood–brain barrier integrity and permeability. J Drug Target 12(9–10):635–641

    Article  CAS  Google Scholar 

  • Marquis BJ, Love SA, Braun KL, Haynes CL (2009) Analytical methods to assess nanoparticle toxicity. Analyst 134:425–439

    Article  CAS  Google Scholar 

  • Mayer B, John M, Heinzel B, Werner ER, Wachter H, Schultz G et al (1991) Brain nitric oxide synthase is a biopterin and flavin-containing multi-functional oxido-reductase. FEBS Lett 288:187–191

    Article  CAS  Google Scholar 

  • Neubert J, Wagner S, Kiwit J, Bräuer A, Glumm J (2015) New findings about iron oxide nanoparticles and their different effects on murine primary brain cells. Int J Nanomedicine 10:2033–2049. doi:10.2147/IJN.S74404

    Article  CAS  Google Scholar 

  • Oszlánczi G, Vezér T, Sárközi L, Horváth E, Kónya Z, Papp A (2010) Functional neurotoxicity of Mn-containing nanoparticles in rats. Ecotoxicol Environ Saf 73(8):2004–2009. doi:10.1016/j.ecoenv.2010.09.002

    Article  Google Scholar 

  • Paxinos G and Watson C (2007) Rat Brain in Stereotaxic Coordinates. Academic Press, Elsevier. p. 446

  • Perlstein B, Ram Z, Daniels D, Ocherashvilli A, Roth Y, Margel S, Mardor Y (2008) Convection-enhanced delivery of maghemite nanoparticles: increased efficacy and MRI monitoring. Neuro-Oncology 10:153–161

    Article  CAS  Google Scholar 

  • Podolski IY, Podlubnaya ZA, Kosenko EA, Mugantseva EA, Makarova EG, Marsagishvili LG, Shpagina MD, Kaminsky YG, Andrievsky GV, Klochkov VK (2007) Effects of hydrated forms of C60 fullerene on amyloid 1-peptide fibrillization in vitro and performance of thecognitive task. J Nanosci Nanotechnol 7(4–5):1479–1485

    Article  CAS  Google Scholar 

  • Raitses VS (1981) Nejrofiziologicheskie osnovy dejstviya mikroehlementov [Neurophysiological basis of the action of trace elements]. Leningrad, Med. p. 152

  • Roohi F, Lohrke J, Ide A, Schütz G, Dassler K (2012) Studying the effect of particle size and coating type on the blood kinetics of superparamagnetic iron oxide nanoparticles. Int J Nanomedicine 7:4447–4458

    CAS  Google Scholar 

  • Rossignol DA, Genuis SJ, Frye RE (2014) Environmental toxicants and autism spectrum disorders: a systematic review. Transl Psychiatry 4(2). doi:10.1038/tp.2014.4

  • Rumenapp C, Gleich B, Haase A (2012) Magnetic nanoparticles in magnetic resonance imaging and diagnostics. Pharm Res 29(5):1165–1179

    Article  Google Scholar 

  • Sachdeva AK, Misra S, Pal Kaur I, Chopra K (2015) Neuroprotective potential of sesamol and its loaded solid lipid nanoparticles in ICV-STZ-induced cognitive deficits: behavioral and biochemical evidence. Eur J Pharmacol 15(747):132–140. doi:10.1016/j.ejphar.2014.11.014

    Article  Google Scholar 

  • Shan D, Xie Y, Ren G, Yang Z (2013) Attenuated effect of tungsten carbide nanoparticles on voltage-gated sodium current of hippocampal CA1 pyramidal neurons. Toxicol in Vitro 27:299–304

    Article  CAS  Google Scholar 

  • Silva GA (2008) Nanotechnology approaches to crossing the blood-brain barrier and drug delivery to the CNS. BMC Neurosci 9(3):4

    Article  Google Scholar 

  • Sizova E, Glushchenko N, Miroshnikov S, Skalny AJ (2011) Influence of Cu10x copper nanoparticles intramuscular injection on mineral composition of rat spleen. Trace Elem Med Biol 25(1):84–89. doi:10.1016/j.jtemb.2010.10.012

    Article  Google Scholar 

  • Sizova EA, Miroshnikov SA, Poliakova VS, Lebedev SV, Glushchenko NN (2013) Copper nanoparticles as modulators of apoptosis and structural changes in some organs. Morfologiia 144(4):47–52

    CAS  Google Scholar 

  • Sizova E, Miroshnikov S, Yausheva E, Polyakova V (2015) Assessment of morphological and functional changes in organs of rats after intramuscular introduction of iron nanoparticles and their agglomerates. Biomed Res Int 243173. doi:10.1155/2015/243173

  • Skalniy AV, Kurchashova SY, Vyatchanina ES (2008) Izuchenie roli disbalansa cinka i drugih mikroehlementov v patogeneze alkogolizma i alkogol’noj ehmbriofetopatii v Rossii [a study of the role of zinc and other trace elements imbalance in the pathogenesis of alcoholism and alcoholic embryofetopathy in Russia]. Narkologia 5(77):26–33

    Google Scholar 

  • Suzuki T, Oshio S, Iwata M, Saburi H, Odagiri T, Udagawa T, Sugawara I, Umezawa M, Takeda K (2010) In utero exposure to a low concentration of diesel exhaust affects spontaneous locomotor activity and monoaminergic system in male mice. Part Fibre Toxicol 7. doi:10.1186/1743-8977-7-7

  • Takeda A, Kodama Y, Ohnuma M, Okada S (1998) Zinc transport from the striatum and substantia nigra. Brain Res Bull 47(1):103–106

    Article  CAS  Google Scholar 

  • Varallyay CG, Nesbit E, Fu R et al (2013) High-resolution steady-state cerebral blood volume maps in patients with central nervous system neoplasms using ferumoxytol, a superparamagnetic iron oxide nanoparticle. J Cerebr Blood F Met 33(5):780–786

    Article  CAS  Google Scholar 

  • Wahajuddin AS (2012) Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomedicine 7:3445–3471

    Article  CAS  Google Scholar 

  • Walsh K, Smith RC, Kim HS (2000) Vascular cell apoptosis in remodeling, restenosis and plaque rupture. Circ Res 87:184–190

    Article  CAS  Google Scholar 

  • Weinstein JS, Varallyay CG, Dosa E et al (2010) Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J. Cerebr. Blood F Met. 30(1):15–35

    Article  CAS  Google Scholar 

  • Xie Y, Wang Y, Zhang T, Ren G, Yang Z (2012a) Effects of nanoparticle zinc oxide on spatial cognition and synaptic plasticity in mice with depressive-like behaviors. J Biomed Sci 19:14

    Article  CAS  Google Scholar 

  • Xie Y, Wang Y, Zhang T, Ren G, Yang Z (2012b) Effects of nanoparticle zinc oxide on spatial cognition and synaptic plasticity in mice with depressive-like behaviors. J Biomed Sci 19(1):1–11. doi:10.1186/1423-0127-19-14

    Article  Google Scholar 

  • Yehuda S, Yodim M (1982) Brain iron: a lesson from animal models. Am J Clin Nutr 50:618–629

    Google Scholar 

  • Yokota S, Takashima H, Ohta R, Saito Y, Miyahara T, Yoshida Y, Negura T, Senuma M, Usumi K, Hirabayashi N et al (2011) Nasal instillation of nanoparticle-rich diesel exhaust particles slightly affects emotional behavior and learning capability in rats. J Toxicol Sci 36:267–276. doi:10.2131/jts.36.267

    Article  CAS  Google Scholar 

  • Yu F, Zhang L, Huang Y, Sun K, David AE, Yang VC (2010) The magnetophoretic mobility and superparamagnetism of core-shell iron oxide nanoparticles with dual targeting and imaging functionality. Biomaterials 31:5842–5848

    Article  CAS  Google Scholar 

  • Zecca L, Stroppolo A, Gatti A, Tampellini D, Toscani M, Gallorini M et al (2004) The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging. Proc Natl Acad Sci U S A 101:9843–9848

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research was done with financial support from the Russian Science Foundation (No. 14-16- 00060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Sheida.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheida, E., Sipailova, O., Miroshnikov, S. et al. The effect of iron nanoparticles on performance of cognitive tasks in rats. Environ Sci Pollut Res 24, 8700–8710 (2017). https://doi.org/10.1007/s11356-017-8531-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8531-6

Keywords

Navigation