Skip to main content
Log in

Comparative responses of diazotrophic abundance and community structure to the chemical composition of paddy soil

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Diazotrophy is considered as one of the most crucial and dynamic phenomena in the rice field and also a major source of nitrogen input. The objective of this study was to elucidate possible interactions between diverse and dominant diazotrophic bacterial community and organic carbon composition of the paddy soil. Our results suggest that most abundantly found diazotrophs belong to a proteobacteria group and uncultured bacterial forms. A gene abundance study clearly showed significantly higher diazotrophic abundance (P < 0.01) at Chandauli (CHN) as compared to Varanasi (VNS) and Ghazipur (GHJ) districts of Eastern Uttar Pradesh, India, with nitrogenase reductase (nifH) copy number between 1.44 × 103 and 3.34 × 103 copy g−1 soil. Fourier-transform infrared (FT-IR) spectroscopy data identified –CO–, C=O (\( {\mathrm{NH}}_{2^{-}} \) and –NH–), \( {\mathrm{CH}}_{2^{-}} \), and OH– as dominant organic functional groups in the paddy soil. Multivariate analysis was performed to get a clear and more accurate picture of interactions between free-living diazotrophs and abiotic soil factors. Regression analysis suggested a similar trend of distribution of different functional groups along each site. Relative abundance and diversity of diazotrophic population increased in response to FT-IR-based soil organic fractions. Maximum number of FT-IR spectral peak at sites in the Chandauli district augmented its bacterial diazotrophic diversity and abundance. Taken together, the present study sheds light on the substrate-driven composition of the microbial population of selected paddy areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adt I, Kohler A, Gognies S, Budin J, Sandt C, Belarbi A, Manfait M, Sockalingum GD (2010) FTIR spectroscopic discrimination of Saccharomyces cerevisiae and Saccharomyces bayanus strains. Can J Microbiol 56:793–801

    Article  CAS  Google Scholar 

  • Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Phylogenet Evol 16:37–48

    Article  CAS  Google Scholar 

  • Bandick AK, Dick PR (1999) Field management effects on soil enzyme activities. Soil Biol Biochem 31:1471–1479

    Article  CAS  Google Scholar 

  • Banerjee A, Supakar S, Banerjee R (2014) Melanin from the nitrogen-fixing bacterium Azotobacter chroococcum: a spectroscopic characterization. PLoS One 9:e84574. https://doi.org/10.1371/journal.pone.0084574

    Article  CAS  Google Scholar 

  • Barberán A, Bates ST, Casamayor EO, Fierer N (2012) Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J 6:343–351

    Article  CAS  Google Scholar 

  • Bardgett RD, Mawdsley JL, Edwards S, Hobbs PJ, Rodwell JS, Davis WJ (1999) Plant species and nitrogen effects on soil biological properties of temperate upland grasslands. Funct Ecol 13:650–660

    Article  Google Scholar 

  • Bouskill NJ, Wood TE, Baran R, Hao Z, Ye Z, Bowen BP, Lim H, Nico PS, Holman HY, Gilbert B, Silver WL, Northen TR, Brodie EL (2016) Belowground response to drought in a tropical forest soil II change in microbial function impacts carbon composition. Front Microbiol 7:323. https://doi.org/10.3389/fmicb.2016.00323

    Article  Google Scholar 

  • Cancela GD, Taboada ER, Huertas FJ, Laguna AH, Rasero FS (1996) Interaction of trialkyl phosphites with montmorillonites. Clay Clay Miner 44:170–176

    Article  Google Scholar 

  • Cassens I, Mardulyn P, Milinkovitch MC (2005) Evaluating intraspecific “network” construction methods using simulated sequence data do existing algorithms outperform the global maximum parsimony approach. Syst Biol 54:363–372

    Article  Google Scholar 

  • Chaffron S, Rehrauer H, Pernthaler J, Von Mering C (2010) A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Res 20:947–959. https://doi.org/10.1101/gr.104521.109

    Article  CAS  Google Scholar 

  • Chen YB, Dominic B, Mellon MT, Zehr JP (1998) Circadian rhythm of nitrogenase gene expression in the diazotrophic filamentous nonheterocystous cyanobacterium Trichodesmium sp. Strain IMS 101. J Bacteriol 180:3598–3605

    CAS  Google Scholar 

  • Chen J, ZT Y, Michel FC, Wittum T, Morrison M (2007) Development and application of real-time PCR assays for quantification of erm genes conferring resistance to macrolides-lincosamides-streptogramin B in livestock manure and manure management systems. Appl Environ Microbiol 73:4407–4416

    Article  CAS  Google Scholar 

  • Cho J-C, Giovannoni SJ (2004) Cultivation and growth characteristics of a diverse group of oligotrophic marine Gammaproteobacteria. Appl Environ Microbiol 70:432–440

    Article  CAS  Google Scholar 

  • Choo-Smith LP et al (2001) Investigating microbiol (micro)colony heterogeneity by vibrational spectroscopy. Appl Environ Microbiol 67:1461–1469

    Article  CAS  Google Scholar 

  • Chow CET, Sachdeva R, Cram JA, Steele JA, Needham DM, Patel A et al (2013) Temporal variability and coherence of euphotic zone bacterial communities over a decade in the Southern California Bight. ISME J 7:2259–2273

    Article  CAS  Google Scholar 

  • Farnelid H, Andersson AF, Bertilsson S, Al-Soud WA, Hansen LH, Sørensen S, Steward GF, Hagström Å, Riemann L (2011) Nitrogenase gene amplicons from global marine surface waters are dominated by genes of non-cyanobacteria. PLoS One 6:e19223

    Article  CAS  Google Scholar 

  • Farnelid H, Bentzon-Tilia M, Andersson AF, Bertilsson S, Jost G, Labrenz M, Jürgens K, Riemann L (2013) Active nitrogen-fixing heterotrophic bacteria at and below the chemocline of the central Baltic Sea. ISME J 7(7):1413–1423

    Article  CAS  Google Scholar 

  • Faust K, Raes J (2012) Microbial interactions: from networks to models. Nat Rev Microbiol 10:538–550

    Article  CAS  Google Scholar 

  • Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364

    Article  Google Scholar 

  • Grangeteau C, Gerhards D, Rousseaux S, von Wallbrunn C, Alexandre H, Guilloux-Benatier M (2015) Diversity of yeast strains of the genus Hanseniaspora in the winery environment: what is their involvement in grape must fermentation? Food Microbiol 50:70–77

    Article  CAS  Google Scholar 

  • Grube M, Muter O, Strikauska S, Gavare M, Limane B (2008) Application of FT-IR spectroscopy for control of the medium composition during the biodegradation of nitro aromatic compounds. J Ind Microbiol Biotechnol 35:1545–1549

    Article  CAS  Google Scholar 

  • Hammer O, Harper DAT, Ryan PD (2001) Past: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  • Hayden HL, Drake J, Imhof M, Oxley APA, Norng S, Mele PM (2010) The abundance of nitrogen cycle genes amoA and nifH depends on land-uses and soil types in South-Eastern Australia. Soil Biol Biochem 42:1774–1783

    Article  CAS  Google Scholar 

  • Hoover T (2000) Control of nitrogen fixation genes in Klebsiella pneumoniae. In: Triplett EW (ed) Prokaryotic nitrogen fixation. Horizon Scientific Press, Norfolk England, pp 131–147

    Google Scholar 

  • Hsu SF, Buckley DH (2009) Evidence for the functional significance of diazotroph community structure in soil. ISME J 3:124–136

    Article  CAS  Google Scholar 

  • Ikenaga M, Muraoka Y, Toyota K, Kimura M (2002) Community structure of the microbiota associated with nodal roots of rice plants along with the growth stages: estimation by PCR-RFLP analysis. Biol Fertil Soils 36:397–404

    Article  CAS  Google Scholar 

  • Kennedy AC, Smith KL (1995) Soil microbial diversity and the sustainability of agricultural soils. Plant Soil 170:75–86

    Article  CAS  Google Scholar 

  • Kim K, Zhang YP, Roberts GP (1999) Correlation of activity regulation and substrate recognition of the ADP ribosyltransferase that regulates nitrogenase activity in Rhodospirillum rubrum. J Bacteriol 181:1698–1702

    CAS  Google Scholar 

  • Knief C, Delmotte N, Chaffron S, Stark M, Innerebner G, Wassmann R, von Mering C, Vorholt JA (2012) Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J 6:1378–1390

    Article  CAS  Google Scholar 

  • Koberl M, Erlacher A, Ramadan E et al (2016) Comparisons of diazotrophic communities in native and agricultural desert ecosystems reveal plants as important drivers in diversity. FEMS Microbiol Ecol. https://doi.org/10.1093/femsec/fiv166

  • Kögel-Knabner I (2000) Analytical approaches for characterizing soil organic matter. Org Geochem 31:609–625

    Article  Google Scholar 

  • Ladha JK, Reddy PM (2003) Nitrogen fixation in rice systems: state of knowledge and future prospects. Plant Soil 252(1):151–167

    Article  CAS  Google Scholar 

  • Limmer C, Drake HL (1998) Effect of carbon nitrogen and electron acceptor availablity on anaerobic N2 fixation in beech forest soil. Soil Biol Biochem 30:153–158

    Article  CAS  Google Scholar 

  • Liu JY, Peng MJ, Li YG (2012) Phylogenetic diversity of nitrogen-fixing bacteria and the nifH gene from mangrove rhizosphere soil. Can J Microbiol 58:531–539

    Article  CAS  Google Scholar 

  • Lopes AR, Bello D, Prieto-Fernández Á, Trasar-Cepeda C, Manaia CM, Nunes OC (2015) Relationships among bulk soil physicochemical biochemical and microbiological parameters in an organic alfalfa-rice rotation system. Environ Science Pollution Res 22:11690–11699

    Article  CAS  Google Scholar 

  • Miguel MAG, Bratos MAP, Martin FJG, Dueňas AD, Martin JFR, Gutiĕrrez PR, Orduňa AD, Rodrǐguez AT (2003) Identification of species of Brucella using Fourier transform infrared spectroscopy. J Microbiol Methods 55:121–131

    Article  CAS  Google Scholar 

  • Naumann D, Helm D, Labischinski H (1991) Microbiological characterizations by FT-IR spectroscopy. Nature 351:81–82

    Article  CAS  Google Scholar 

  • Nichols P, Henson M, Guckert J, Nivens J, White DC (1985) Fourier transform-infrared spectroscopic methods for microbial ecology: analysis of bacteria bacteria-polymer mixtures and biofilms. J Microbial Methods 4:79–94

    Article  CAS  Google Scholar 

  • Padmanabhan P, Padmanabhan S, DeRito C, Gray A, Gannon D, Snape JR, Tsai CS, Park W, Jeon C, Madsen EL (2003) Respiration of 13C-labeled substrates added to soil in the field and subsequent 16S rRNA gene analysis of 13C-labeled soil DNA. Appl Environ Microbiol 69:1614–1622

    Article  CAS  Google Scholar 

  • Poly F, Ranjard L, Nazaret S, Gourbière F, Monrozier LJ (2001) Comparison of nifH gene pools in soils and soil microenvironments with contrasting properties. Appl Environ Microbiol 67:2255–2262

    Article  CAS  Google Scholar 

  • Riemann L, Farnelid H, Steward GF (2010) Nitrogenase genes in non-cyanobacterial plankton: prevalence diversity and regulation in marine waters. Aquat Microb Ecol 61:235–247

    Article  Google Scholar 

  • Riffkin PA, Quigley PE, Kearney GA, Cameron FJ, Gault RR, Peoples MB, Thies JE (1999) Factors associated with biological nitrogen fixation in dairy pastures in south-western Victoria. Aust J Agric Res 50:261–272

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • Shu W, Pablo GP, Jun Y, Danfeng H (2012) Abundance and diversity of nitrogen-fixing bacteria in rhizosphere and bulk paddy soil under different duration of organic management. World J Microbiol Biotechnol 28:493–503

    Article  CAS  Google Scholar 

  • Snajdr J, Cajthaml T, Val askov a V, Merhautova V, Petr ankov a M, Spetz P, Leppänen K, Baldrian P (2011) Transformation of Quercus petraea litter: successive changes in litter chemistry are reflected in differential enzyme activity and changes in the microbial community composition. FEMS Microbiol Ecol 75:291–303

    Article  CAS  Google Scholar 

  • Srivastava M, Kaushik MS, Mishra AK (2016a) Linking the physico-chemical properties with the abundance and diversity of rhizospheric bacterial population inhabiting paddy soil based on a concerted multivariate analysis of PCR-DGGE and ribosomal intergenic spacer analysis (RISA). Geomicrobiol J 33:894–905

    Article  CAS  Google Scholar 

  • Srivastava M, Kaushik MS, Singh A, Singh D, Mishra AK (2016b) Molecular phylogeny of heterotrophic nitrifiers and aerobic denitrifiers and their potential role in ammonium removal. J Basic Microbiol 56:907–921

    Article  CAS  Google Scholar 

  • Srivastava M, Kaushik MS, Srivastava A, Singh A, Verma E, Mishra AK (2016c) Deciphering the evolutionary affiliations among bacterial strains (Pseudomonas and Frankia sp) inhabiting same ecological niche using virtual RFLP and simulation-based approaches. 3 Biotech 6:178

    Article  Google Scholar 

  • Udelhoven T, Naumann D, Schmit J (2000) Development of a hierarchical classification system with artificial neural networks and FTIR spectra for the identification of bacteria. Appl Spectrosc 54(10):1471–1479

    Article  CAS  Google Scholar 

  • Verhoefen MK, Schäfer G, Shastri S, Weber I, Glaubitz C, Mäntele W, Wachtveitl J (2011) Low temperature FTIR spectroscopy provides new insights in the pH-dependent proton pathway of proteorhodopsin. Biochim Biophys Acta Bioenerg 1807(12):1583–1590

    Article  CAS  Google Scholar 

  • Wakelin SA, Gupta VVSR, Forrester ST (2010) Regional and local factors affecting diversity abundance and activity of free-living N2-fixing bacteria in Australian agricultural soils. Pedobiol 53:391–399

    Article  Google Scholar 

  • Walker LR, del Moral R (2003) Primary succession and ecosystem rehabilitation. Cambridge University Press, Cambridge 442 pp

    Book  Google Scholar 

  • Wang J, Zhang D, Zhang L, Li J, Raza W, Huang Q, Shen Q (2016) Temporal variation of diazotrophic community abundance and structure in surface and subsoil under four fertilization regimes during a wheat growing season. Agric Ecosyst Environ 216:116–124

    Article  CAS  Google Scholar 

  • Ward JB, Berkeley RCW (1980) The microbial cell surface and adhesion. In: Berkeley RCW, Lynch JM, Melling J, Rutter PR, Vincent B (eds) Microbial adhesion to surfaces. Ellis Horwood Ltd, Chichester, pp 47–66

    Google Scholar 

  • Watanabe I, Barraquio WL, De Guzman MR, Cabrera DA (1979) Nitrogen-fixing (acetylene reduction) activity and population of aerobic heterotrophic nitrogen fixing bacteria associated with wetland rice. Appl Environ Microbiol 37:813–819

    CAS  Google Scholar 

  • Wolters V (1991) Biological processes in two beech forest soils treated with simulated acid rain—a laboratory experiment with Isotoma tigrina (Insecta Collembola). Soil Biol Biochem 23:381–390

    Article  CAS  Google Scholar 

  • Wu J, Brookes PC (2005) The proportional mineralization of microbial biomass and organic matter caused by air-drying and rewetting of a grassland soil. Soil Biol Biochem 37:507–515

    Article  CAS  Google Scholar 

  • Yeager CM, Kornosky JL, Housman DC, Grote EE, Belnap J, Kuske CR (2004) Diazotrophic community structure and function in two successional stages of biological soil crusts from the Colorado plateau and Chihuahuan desert. Appl Environ Microbiol 70:973–983

    Article  CAS  Google Scholar 

  • Young JPW (1996) Phylogeny and taxonomy of rhizobia. Plant Soil 186:45–52

    Article  CAS  Google Scholar 

  • Zehr JP, Jenkins BD, Short SM, Steward GF (2003) Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol 5:539–554

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Head, Department of Botany, Coordinator CAS and DST-FIST programs, Department of Botany, BHU, Varanasi, India, is gratefully acknowledged for providing laboratory facilities. Central Instrumentation Laboratory, Department of Chemistry, Banaras Hindu University is acknowledged for FT-IR Analysis.

Funding

This study has been supported by the Council of Scientific and Industrial Research, New Delhi, India [38(1316)/12/EMR-II]. MS is also thankful to UGC, New Delhi, for providing financial assistance in the form of fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Kumar Mishra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Robert Duran

Electronic supplementary material

Fig. S1

(GIF 410 kb)

High resolution image

(TIFF 46275 kb)

Table S1

(DOCX 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, M., Mishra, A.K. Comparative responses of diazotrophic abundance and community structure to the chemical composition of paddy soil. Environ Sci Pollut Res 25, 399–412 (2018). https://doi.org/10.1007/s11356-017-0375-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0375-6

Keywords

Navigation