Skip to main content

Advertisement

Log in

The efficiency of Eichhornia crassipes in the removal of organic and inorganic pollutants from wastewater: a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Water is a basic necessity of life, but due to overextraction and heavy input of nutrients from domestic and industrial sources, the contamination level of water bodies increase. In the last few decades, a potential interest has been aroused to treat wastewater by biological methodologies before discharge into the natural water bodies. Phytoremediation using water hyacinth is found to be an effective biological wastewater treatment method. Water hyacinth (Eichhornia crassipes), a notorious weed, being the most promising plant for removal of contaminants from wastewater is studied extensively in this regard. It has been successfully used to accumulate heavy metals, dyes, radionuclides, and other organic and inorganic contaminants from water at laboratory, pilot, and large scale. The plant materials are also being used as sorbent to separate the contaminant from water. Other than phytoremediation, the plant has been explored for various other purposes like ethanol production and generation of biogases and green manures. Such applications of this have been good support for the technocrats in controlling the growth of the plant. The present paper reviews the phytoremedial application of water hyacinth and its capability to remove contaminants in produced water and wastewater from domestic and isndustrial sources either used as a whole live plant grown in water or use of plant body parts as sorbent has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdelhamid AM, Gabr AA (1991) Evaluation of water hyacinth as feed for ruminants. Arch Ani Nut 41(7/8):745–756

    Google Scholar 

  • Abdel-sabour MF (2010) Water hyacinth: available and renewable resource. EJEAF Che 9(11):1746–1759

    Google Scholar 

  • Aboul-Fetouh MS, Elmorsi TM, El-Kady JM, El-Adawi HA (2010) Water hyacinth stems a potential natural adsorbent for the adsorption of acid green 20 dyes. Environ Sci 5(4):257–266

    Google Scholar 

  • Ajayi O, Ogunbayo AO (2012) Achieving environmental sustainability in wastewater treatment by phytoremediation with water hyacinth (Eichhornia crassipes). J Sustain Develop 5(7)

  • Alvarado S, Guédez M, Lué-Merú MP, Nelson G, Alvaro A, Jesús AC, Gyula Z (2008) Arsenic removal from waters by bioremediation with the aquatic plants water hyacinth (Eichhornia crassipes) and lesser duckweed (Lemna minor). Bioresour Technol 99:8436–8440

    Article  CAS  Google Scholar 

  • Annadurai G, Juang RS, Lee DJ (2002) Adsorption of heavy metals from water using banana and orange peels. Water Sci Tech 47(1):185–190

    Google Scholar 

  • Anudechakul C, Vangnai AS, Ariyakanon N (2015) Removal of chlorpyrifos by water hyacinth (Eichhornia crassipes) and the role of a plant-associated bacterium. Inter J Phyto 17:678–685

    Article  CAS  Google Scholar 

  • Aweke G (1993) The water hyacinth (Eichhornia crassipes) in Ethiopia. Bulletin des se’ances. Acade’mie royale des Sciences d’outre-mer, Brussels 39(3):399–404

    Google Scholar 

  • Babu RM, Sajeena A, Seetharaman K (2004) Solid substrate for production of Alternaria alternata conidia: a potential mycoherbicide for the control of Eichhornia crassipes (water hyacinth). Weed Res 44:298–304

    Article  Google Scholar 

  • Balasubramanian D, Arunachalam K, Arunachalam A (2014) Ecology and management of Eichhornia crassipes (mart.) solms.—a mini review. Inter J Environ Sci 5(2):139–155

    Google Scholar 

  • Bhainsa C, D'Souza SF (2001) Uranium (VI) biosorption by dried roots of Eichhornia crassipes (water hyacinth). J Environ Sci Health A36(9):1621–1631

    Article  CAS  Google Scholar 

  • Bissen M, Frimmel FH (2003) Arsenic—a review. Part II: oxidation of arsenic and its removal in water treatment Acta Hydrochim Hydrobio 31:97–107

    CAS  Google Scholar 

  • Casabianca MLD, Laugier T (1995) Eichhornia crasssipes production on proliferous wastewater: effect of salinity. Bioresour Technol 54:39–43

    Article  Google Scholar 

  • Charudattan R (1986) Integrated control of water hyacinth (Eichhornia crassipes) with pathogens insects and herbicides. Weed Sci 34:26–30

    Google Scholar 

  • Cheng JB, Xie F, Zhou JH, Song WL, Cen KF (2010) Cogeneration of H-2 and CH from water hyacinth by two-step anaerobic fermentation. Int J Hydrogen Energy 35: 3029–3035

  • Costa RHR, Bavaresco ASL, Medri W, Philippi LS (2000) Tertiary treatment of piggery wastes in water hyacinth ponds. Water Sci Tech 42(10):211–214

    CAS  Google Scholar 

  • Dai YL (2001) Observation and improvement of general egg quality. Chin J Poult 23(10):42–43

    Google Scholar 

  • El Zawahry MM, Kamel MM (2004) Removal of azo and anthraquinone dyes from aqueous solutions by Eichhornia crassipes. Water Res 38:2967–2972

    Article  CAS  Google Scholar 

  • Elfeky SA, Imam H, Alsherbini AA (2013) Bio-absorption of Ni and Cd on Eichhornia crassipes root thin film. Environ Sci Pollut Res 20:8220–8226

    Article  CAS  Google Scholar 

  • Espinoza-Quinones R, da Silva EA, MDA R, Pala`cio SM, Mo`denes AN, Szymanski N, Martin N, Kroumov AD (2008) Chromium ions phytoaccumulation by three floating aquatic macrophytes from a nutrient medium. World J Microbiol Biotechnol 24:3063–3070

    Article  CAS  Google Scholar 

  • Gajalakshami S, Ramasamy EV, Abbasi SA (2002) Vermicomposting of different forms of water hyacinth by the earthworm Eudrilus euginea, Kinburg. Bioresour Technol 82:165–169

    Article  Google Scholar 

  • Ganesh S, Ramasamy EV, Gajalakshmi S, Abbasi SA (2005) Extraction of volatile fatty acids (VFAs) from water hyacinth using inexpensive contraptions, and the use of the VFAs as feed supplement in conventional biogas digesters with concomitant final disposal of water hyacinth as vermicompost. Biochem Engg J 27:17–23

    Article  CAS  Google Scholar 

  • Ganguly A, Chatterjee PK, Dey A (2012) Studies on ethanol production from water hyacinth—a review. Renew. Sustain. Energy Rev 16:966–972

    CAS  Google Scholar 

  • Guerrero-Coronilla I, Morales-Barrera L, Cristiani-Urbina E (2015) Kinetic, isotherm and thermodynamic studies of amaranth dye biosorption from aqueous solution onto water hyacinth leaves. J Environ Manag 152:99–108

    Article  CAS  Google Scholar 

  • Gunnarsson C, Petersen CM (2007) Water hyacinths as a resource in agriculture and energy production: a literature review. Waste Manag 27:117–129

    Article  Google Scholar 

  • Habuda-Stanić M, Nujić M (2015) Arsenic removal by nanoparticles: a review. Environ Sci Poll Res 22:8094–8123

    Article  Google Scholar 

  • Hadiyanto CM, Soetrisnanto D (2013) Phytoremediation of palm oil mill effluent (POME) by using aquatic plant and microalgae for biomass production. J Enviro Sci Tech 6(2):79–90

    Article  CAS  Google Scholar 

  • Haider SZ (1989) Recent work in Bangladesh in utilization of water hyacinth. Commonwealth science council Dhaka/ Dhaka university, Dhaka pp 32

  • Haller WT, Sutton DL, Barlowe WC (1974) Effects of salinity on growth of several aquatic macrophytes. Ecology 55(4): 891-894

  • Harley KLS, Julien MH, Wright AD (1997) Water hyacinth: a tropical worldwide problem and methods for its control, proceedings of the first meeting of the international water hyacinth consortium. World Bank

  • Hazra M, Avishek K, Pathaka G (2015) Phytoremedial potential of Typha latifolia, Eichornia crassipes and Monochoria hastata found in contaminated water bodies across Ranchi city (India). Inter J Phyto 17(9):835–840

    Article  CAS  Google Scholar 

  • He PJ, Mao B, Lü F, Shao LM, Lee DJ, Chang JS (2013) The combined effect of bacteria and Chlorella vulgaris on the treatment of municipal wastewaters. Bioresour Technol 146:562–568

    Article  CAS  Google Scholar 

  • Heard TA, Winterton SL (2000) Interactions between nutrient status and weevil herbivory in the biological control of water hyacinth. J Appl Ecol 37:117–127

    Article  Google Scholar 

  • Ibrahim S, Ammara NS, Soylak M, Ibrahim M (2012) Removal of Cd (II) and Pb (II) from aqueous solution using dried water hyacinth as a biosorbent. Spectrochim Acta Part A: Mol Biomol Spect 96:413–420

    Article  CAS  Google Scholar 

  • Inubushi K, Sugii H, Nishino S, Nishino E (2001) Effect of aquatic weeds on methane emission from submerged paddy soil. American J Bot 88:975–979

    Article  CAS  Google Scholar 

  • Jayaweeraa MW, Kasturiarachchia JC, Kularatnea RKA, Wijeyekoon SLJ (2008) Contribution of water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nutrient conditions to Fe-removal mechanisms in constructed wetlands. J Environ Manag 87:450–460

    Article  Google Scholar 

  • Kanawade SM, Gaikwad RW (2011) Removal of methylene blue from effluent by using activated carbon and water hyacinth as adsorbent. Inter J Chem Engg Appli 2(5)

  • Kaur S, Rani S, Mahajan RK (2015) Adsorption of dye crystal violet onto surface-modified Eichhornia crassipes. Desal Water Treat 53(7):1957–1969

    Article  CAS  Google Scholar 

  • Kelley C, Mielke RE, Maquibo D, Curtis AJ, Dewitt JG (1999) Adsorption of Eu (III) onto roots of water hyacinth. Environ Sci Technol 33:1439–1443

    Article  CAS  Google Scholar 

  • Kivaisi AK, Mtila M (1995) Chemical composition and invitro degradability of whole plants and shoots of the water hyacinth (Eicchornia crassipes) by rumen micro-organisms. Tanzan Vet J 15:121–129

    Google Scholar 

  • Kularatne RK, Kasturiarachchi JC, Manatunge JM, Wijeyekoon SL (2009) Mechanisms of manganese removal from wastewaters in constructed wetlands comprising water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nutrient conditions. Water Environ Res 81(2):165–172

    Article  CAS  Google Scholar 

  • Kulkarni BV, Ranade SV, Wasif AI (2007) Phytoremediation of textile process effluent by using water hyacinth-a polishing treatment. J Indus Poll Cont 23(1):97–101

    CAS  Google Scholar 

  • Kumar JIN, Soni H, Kumar RN, Bhatt I (2008) Macrophytes in phytoremediation of heavy metal contaminated water and sediments in Pariyej community reserve, Gujarat, India. Turk J Fish Aqu Sci 8: 193-20

  • Ladeira ACQ, Ciminelli VST, Nepomuceno AL (2002) Seleça˜o de solos para a imobilizaça˜o de arseˆnio. REM 55:215–221

    Google Scholar 

  • Lagos C, Urrutiaa R, Decapa J, Martinezb M, Vidala G (2009) Eichhornia crassipes used as tertiary color removal treatment for Kraft mill effluent. Desalination 246:45–54

    Article  CAS  Google Scholar 

  • Li X, Xi H, Sun X, Yang Y, Yang S, Zhou Y, Zhou X, Yang Y (2015a) Comparative proteomics exploring the molecular mechanism of eutrophic water purification using water hyacinth (Eichhornia crassipes). Environ Sci Pollut Res 22:8643–8658

    Article  CAS  Google Scholar 

  • Li X, Zhou Y, Yang Y, Yang S, Sun X, Yang Y (2015b) Physiological and proteomics analyses reveal the mechanism of Eichhornia crassipes tolerance to high-concentration cadmium stress compared with Pistia stratiotes. PLoS One 10(4):e0124304

    Article  Google Scholar 

  • Litter MI, Morgada ME, Bundschuh J (2010) Possible treatments for arsenic removal in Latin American waters for human consumption. Environ Poll 158:1105–1118

    Article  CAS  Google Scholar 

  • Liu J, Donga Y, Xu H, Wang D, Xu J (2007) Accumulation of Cd, Pb and Zn by 19 wetland plant species in constructed wetland. J Hazard Mater 147:947–953

    Article  CAS  Google Scholar 

  • Low S, Lee CK, Tan KK (1995) Biosorption of basic dyes by water hyacinth roots. Bioresour Technol 52:79–83

    Article  CAS  Google Scholar 

  • Lu X, Gao Y, Luo J, Yan S, Rengel Z, Zhang Z (2014) Interaction of veterinary antibiotic tetracyclines and copper on their fates in water and water hyacinth (Eichhornia crassipes). J Hazard Mat 280:389–398

    Article  CAS  Google Scholar 

  • Mahamadi C (2011) Water hyacinth as a biosorbent: a review. African J Environ Sci Technol 5(13):1137–1145

    CAS  Google Scholar 

  • Mahamadi C, Nharingo T (2010) Competitive adsorption of Pb (II), Cd (II) and Zn (II) ions onto Eichhornia crassipes in binary and ternary systems. Bioresour Technol 101(3):859–864

    Article  CAS  Google Scholar 

  • Malik A (2007) Environmental challenge vis a vis opportunity: The case of water hyacinth. Environ Inter 33:122–138

    Article  CAS  Google Scholar 

  • Mandal A, Purakayastha TJ, Patra AK, Sanyal SK (2012) Phytoremediation of arsenic contaminated soil by Pteris vittata L.I.: influence of phosphatic fertilizers and repeated harvests. Inter J Phyto 14(10):978–995

    Article  CAS  Google Scholar 

  • Martyn RD, Freeman TE (1978) Evaluation of Acremonium zonetum as potential biocontrol agent of water hyacinth. Plant Disease Res 62:604–610

    Google Scholar 

  • Mayo AW, Hanai EE (2016) Modeling phytoremediation of nitrogen-polluted water using water hyacinth (Eichhornia crassipes). Phys Chem Earth doi. doi:10.1016/j.pce.2016.10.016

    Google Scholar 

  • Mazen AMA, Maghraby OMOE (1998) Accumulation of cadmium lead and strontium and a role of calcium oxalate in water hyacinth tolerance. Biol Plant 40:411–413

    Article  Google Scholar 

  • Misbahuddin M, Fariduddin A (2002) Water hyacinth removes arsenic from arsenic-contaminated drinking water. Arch Environ Health: An Inter J 57(6):516–518

    Article  CAS  Google Scholar 

  • Mishra K, Tripathi BD (2008) Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresour Technol 99:7091–7097

    Article  CAS  Google Scholar 

  • Mishra S, Kumar A, Shukla P (2015) Study of water quality in Hindon River using pollution index and environmetrics. India Desal Water Treat. doi:10.1080/19443994.2015.1098570

    Google Scholar 

  • Mishra VK, Tripathi BD (2009) Accumulation of chromium and zinc from aqueous solutions using water hyacinth (Eichhornia crassipes). J Hazard Mat 164:1059–1063

    Article  CAS  Google Scholar 

  • Mukherjee S, Mondal GC (1995) Removal of lead by water hyacinth. Ind J Chem Technol 2:59–62

    CAS  Google Scholar 

  • Mukhopadyay SK, Hossain A (1990) Management and utilization of water hyacinth vegetation as natural resourse in India for the benefit of agriculture. Indian J Agro 35:218–223

    Google Scholar 

  • Muthunarayanan V, Santhiya M, Swabna V, Geetha A (2011) Phytodegradation of textile dyes by water hyacinth (Eichhornia crassipes) from aqueous dye solutions. Inter J Environ Sci 1:7

    Google Scholar 

  • Ndimele PE, Kumolu-Johnson CA, Anetekhai MA (2011) The invasive aquatic macrophytes, water hyacinth {Eichhornia Crassipes (Mart.) Solm-Laubach: Pontedericeae}: problems and prospects. Res J Environ Sci 5(6):509–520

    Article  Google Scholar 

  • Ndimele PE, Ndimele CC (2013) Comparative effects of biostimulation and phytoremediation on crude oil degradation and absorption by water hyacinth (Eichhornia crassipes [Mart.] Solms). Inter J Enviro Stud 70 (2): 241-258

  • Nesterenko-Malkovskaya A, Kirzhner F, Zimmels Y, Armon R (2012) Eichhornia crassipes capability to remove naphthalene from wastewater in the absence of bacteria. Chemosphere 87:1186–1191

    Article  CAS  Google Scholar 

  • Odjegba J, Fasidi IO (2007) Phytoremediation of heavy metals by Eichhornia crassipes. Environmentalist 27:349–355

    Article  Google Scholar 

  • Ofomaja AE, Ho YS (2007) Equilibrium sorption of anionic dye from aqueous solution by palm kernel fibre as sorbent. J Dyes Pig 74:60–66

    Article  CAS  Google Scholar 

  • Osman HE, Elhag GA, Osman MM (1981) Studies on the nutritive value of water hyacinth (Eichhorina crassipes (Mart.) solms). Aquatic weeds in the Sudan, National Council for Research. Khartoum, Sudan, 104–128

  • Park D, Yun YS, Park JM (2010) The past, present, and future trends of biosorption. Biotechnol Bioprocess Eng 15:86–102

    Article  CAS  Google Scholar 

  • Paz-Alberto AM, Sigua GC (2013) Phytoremediation: a green technology to remove environmental pollutants. American J. Climate Change 2:71–86

    Article  Google Scholar 

  • Penfound WT, Earle TT (1948) The biology of the water hyacinth. Ecol Monog 18(4):447–472

    Article  Google Scholar 

  • Pirnie M (2000) Technologies and costs for removal of arsenic from drinking water, US EPA Report 815-R-00–028.

  • Poddar K, Mandal L, Banerjee GC (1991) Studies on water hyacinth (Eichhornia crassipes) – Chemical composition of the plant and water from different habitats. Ind Vet J 68: 833–837

  • Prakash O, Mehrotra I, Kumar P (1987) Removal of cadmium from water by water hyacinth. J Environ Eng 113:352–365

    Article  CAS  Google Scholar 

  • Prasad B, Maiti D (2016) Comparative study of metal uptake by Eichhornia crassipes growing in ponds from mining and non mining areas—a field study. Bioremed J 20:144–152

    Article  CAS  Google Scholar 

  • Prasad MNV (2003) Phytoremediation of metal-polluted ecosystems: hype for commercialization. Russian J Plant Physio 50(5):686–700

    Article  CAS  Google Scholar 

  • Priya S, Selvan PS (2014) Water hyacinth (Eichhornia crassipes)—an efficient and economic adsorbent for textile effluent treatment—a review. Arabian J Chem doi. doi:10.1016/j.arabjc.2014.03.002

    Google Scholar 

  • Rajamohan N (2009) Equilibrium studies on sorption of an anionic dye onto acid activated water hyacinth roots. African J Environ Sci Technol 3(11):399–404

    CAS  Google Scholar 

  • Rani S, Kaur S, Mahajan RK (2015) Comparative study of surface modified carbonized Eichhornia crassipes for adsorption of dye safranin. Sep Sci Technol 50(16):2436–2447

    CAS  Google Scholar 

  • Ravenscroft P, Brammer H, Richards K (2009) Arsenic pollution: a global synthesis. Wiley Blackwell, Oxford, UK. DOI: 10.1002/9781444308785

  • Rezania S, Ponraj M, Din MFM, Songip AR, Sairan FM, Chelliapan S (2015a) The diverse applications of water hyacinth with main focus on sustainable energy and production for new era: an overview. Renew Sust Energ Rev 41:943–954

    Article  Google Scholar 

  • Rezania S, Ponraj M, Talaiekhozani A, Mohamad SE, Din MFM, Taib SM, Sabbagh F, Sairan FM (2015b) Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater. J Environ Manag 163:125–133

    Article  CAS  Google Scholar 

  • Rezaniaa S, Taibb SM, Dina MFM, Dahalanc FA, Kamyab H (2016) Comprehensive review on phytotechnology: heavy metals removal by diverse aquatic plants species from wastewater. J Hazard Mat 318:587–599

    Article  Google Scholar 

  • Rmalli SWA, Harrington CF, Ayub M, Haris PI (2005) A biomaterial based approach for arsenic removal from water. J Environ Monit 7:279–282

    Article  Google Scholar 

  • Romanova TE, Shuvaeva OV, Belchenko LA (2016) Phytoextraction of trace elements by water hyacinth in contaminated area of gold mine tailing. Int J Phytoremediat 18:190–194

    Article  CAS  Google Scholar 

  • Rushing WN (1973) Water hyacinth research in Puerto rice. Hyacinth control J 13:48–50

    Google Scholar 

  • Sahu K, Naraian R, Chandra V (2007) Accumulation of metals in naturally grown weeds (aquatic macrophytes) grown on an industrial effluent channel. Clean 35(3):261–265

    CAS  Google Scholar 

  • Saleh HM (2012) Water hyacinth for phytoremediation of radioactive waste simulate contaminated with cesium and cobalt radionuclides. Nuc Engg Design 242:425–432

    Article  CAS  Google Scholar 

  • Sancha AM (2006) Review of coagulation technology for removal of arsenic: case of Chile. J Health, Pop Nut 24(3):267–272

    Google Scholar 

  • Shah RA, Kumawat DM, Singh N, Wani KA (2010) Water hyacinth (Eichhornia crassipes) as a remediation tool for dye-effluent pollution. Int J Sci Nature 1(2):172–178

    Google Scholar 

  • Shoukry MM (1982) Optimum utilization of water hyacinth plants in feeding ruminants. Ph.D. Thesis, Ain shams Univ., Fac. Of Agric

  • Singh RD, Yadav DV (1986) Evaluation of low grade rock phosphate composted with some agricultural wastes for use in a crop rotation. Agric Wastes 18:73–79

    Article  Google Scholar 

  • Sinha S, Pandey K, Mohan D, Singh KP (2003) Removal of fluoride from aqueous solutions by Eichhornia crassipes biomass and its carbonized form. Ind Eng Chem Res 42:6911–6918

    Article  CAS  Google Scholar 

  • Soni M, Sharma AK, Srivastava JK, Yadav JS (2012) Adsorptive removal of methylene blue dye from an aqueous solution using water hyacinth root powder as a low cost adsorbent. Inter J Chem Sci Appl 3(3):338–345

    CAS  Google Scholar 

  • Sooknah D, Wilkie AC (2004) Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater. Ecol Engg 22:27–42

    Article  Google Scholar 

  • Sooknah R (2000) A review of the mechanisms of pollutant removal in water hyacinth systems. Sci Technol 6:1–9

    Google Scholar 

  • Sung K, Lee GJ, Munster C (2015) Effects of Eichhornia crassipes and Ceratophyllum demersum on soil and water environments and nutrient removal in wetland microcosms. Inter J Phyto 17(10):936–944

    Article  CAS  Google Scholar 

  • Swain G, Adhikari S, Mohanty P (2014) Phytoremediation of copper and cadmium from water using water hyacinth, Eichhornia crassipes. Inter J Agri Sci Technol 2:1. doi:10.14355/ijast.2014.0301.01

    Article  Google Scholar 

  • Tangahu V, Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Inter J Chem Engg 939161:31. doi:10.1155/2011/939161

    Google Scholar 

  • Uday USP, Choudhury P, Bandyopadhyay TK, Bhunia B (2016) Classification, mode of action and production strategy of xylanase and its application for biofuel production from water hyacinth. Int J Biol Macromol 82:1041–1054

    Article  CAS  Google Scholar 

  • Uddin MT, Islam MS, Abedin MZ (2007) Adsorption of phenol from aqueous solution by water hyacinth ash. ARPN J Engg App Sci 2:2

    Google Scholar 

  • Ugya AY, Imam TS (2015) The efficiency of Eicchornia crassipes in the phytoremediation of waste water from Kaduna refinery and petrochemical company. J Pharm Bio Sci 10(1):76–80

    Google Scholar 

  • Ugya AY, Imam TS, Hassan AS (2015) The use of Ecchornia crassipes to remove some heavy metals from romi stream: a case study of Kaduna refinery and petrochemical company polluted stream. J Pharm Biol Sci 10:43–46

    Google Scholar 

  • Verma VK, Gupta RK, Rai JPN (2005) Biosorption of Pb and Zn from pulp and paper industry effluent by water hyacinth (Eichhornia crassipes). J Sci Indus Res 64: 778-781

  • Wang L, Chen A, Fields K (2000) Arsenic removal from drinking water by ion exchange and activated alumina plants, EPA/600/R-00/088.

  • Weis JS, Weis P (2004) Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int 30:685–700

    Article  CAS  Google Scholar 

  • Wilson MR, Harms RH, Damron BL (1977) The potential of gees in the control and utilization of water hyacinth. Poult Science 56:13–60

    Google Scholar 

  • Wolverton C, McDonald RC (1978) Bioaccumulation and detection of trace levels of cadmium in aquatic systems by Eichhornia crassipes. Environ Health Perspec 27:161–164

    Article  CAS  Google Scholar 

  • Xia H (2008) Enhanced disappearance of dicofol by water hyacinth in water. Environ Technol 29:297–302

    Article  CAS  Google Scholar 

  • Xia H, Ma X (2006) Phytoremediation of ethion by water hyacinth (Eichhornia crassipes) from water. Bioresour Technol 97:1050–1054

    Article  CAS  Google Scholar 

  • Zheng JC, Fenga HM, Lama MHW, Lama PS, Ding YW, Yu HQ (2009) Removal of Cu (II) in aqueous media by biosorption using water hyacinth roots as a biosorbent material. J Hazard Mat 171:780–785

    Article  CAS  Google Scholar 

  • Zimmels Y, Kirzhner F, Malkovskaja A (2006) Application of Eichhornia crassipes and Pistia stratiotes for treatment of urban sewage in Israel. J Environ Manag 81:420–428

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Maiti.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S., Maiti, A. The efficiency of Eichhornia crassipes in the removal of organic and inorganic pollutants from wastewater: a review. Environ Sci Pollut Res 24, 7921–7937 (2017). https://doi.org/10.1007/s11356-016-8357-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-8357-7

Keywords

Navigation