Skip to main content

Advertisement

Log in

Genotoxicity of citrate-coated silver nanoparticles to human keratinocytes assessed by the comet assay and cytokinesis blocked micronucleus assay

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Silver nanoparticles (AgNPs) are widely used in industrial, cosmetic, and biomedical products, and humans are frequently exposed to these products through the skin. It is widely recognized that the characteristics of AgNPs (e.g., size, coating) may influence their cytotoxic effects, but their correlation with DNA damage and mitotic disorders remains poorly explored. In this study, human keratinocytes (HaCaT cell line) were exposed to well-characterized 30 nm AgNPs coated with citrate, and their effects on viability, DNA fragmentation (assessed by the comet assay), and micronuclei (MNi) induction (assessed by the cytokinesis-block micronucleus cytome assays, CBMN) were investigated. The results showed that 10 and 40 μg/mL AgNPs decreased cell proliferation and viability, and induced a significant genetic damage. This was observed by an increase of DNA amount in comet tail, which linearly correlated with dose and time of exposure. Also, cytostaticity (increase of mononucleated cells) and MNi rates increased in treated cells. In contrast, no significant changes were observed in nucleoplasmatic bridges (NPBs) or nuclear buds (NBUDs), although NBUDs tended to increase in all conditions and periods. The cytostatic effects on HaCaT cells were also shown by the decrease of their nuclear division index. Thus, both comet and CBMN assays supported the observation that citrate-AgNPs induced genotoxic effects on HaCaT cells. Considering that AgNPs are present in a vast number of consumer products and also in multiple nanomedicine skin applications and formulations, more research is needed to determine the properties that confer less toxicity of AgNPs to different cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdelhalim MAK, Jarrar BM (2011) Renal tissue alterations were size-dependent with smaller ones induced more effects and related with time exposure of gold nanoparticles. Lipids Health Dis 10(1):1

    Article  Google Scholar 

  • Ahamed M, Alsalhi M, Siddiqui M (2010) Silver nanoparticle applications and human health. Clin Chim Acta 411(23):1841–1848

    Article  CAS  Google Scholar 

  • AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279–290

    Article  CAS  Google Scholar 

  • Ávalos A, Haza AI, Morales P (2015) Manufactured silver nanoparticles of different sizes induced DNA strand breaks and oxidative DNA damage in hepatoma and leukaemia cells and in dermal and pulmonary fibroblasts. Folia Biol (Praha) 61:33–42

    Google Scholar 

  • Banasik A, Lankoff A, Piskulak A, Adamowska K, Lisowska H, Wojcik A (2005) Aluminum-induced micronuclei and apoptosis in human peripheral-blood lymphocytes treated during different phases of the cell cycle. Environ Toxicol 20(4):402–406

    Article  CAS  Google Scholar 

  • Bastos V, de Oliveira JMF, Brown D, Johnston H, Malheiro E, Daniel-da-Silva AL, Duarte IF, Santos C, Oliveira H (2016a) The influence of citrate or PEG coating on silver nanoparticle toxicity to a human keratinocyte cell line. Toxicol Lett 249:29–41

    Article  CAS  Google Scholar 

  • Bastos V, Ferreira-de-Oliveira JM, Carrola J, Daniel-da-Silva AL, Duarte IF, Santos C, Oliveira H (2016b) Coating independent cytotoxicity of citrate-and PEG-coated silver nanoparticles on a human hepatoma cell line. J Environ Sci, In press

  • Bastos V, Brown D, Johnston H, Daniel-da-Silva AL, Duarte IF, Santos C, Oliveira H (2016c) Inflammatory responses of a human keratinocyte cell line to 10 nm citrate-and PEG-coated silver nanoparticles. J Nanopart Res 18(7):205

    Article  Google Scholar 

  • Behra R, Sigg L, Clift M, Herzog F, Minghetti M, Johnston B, Petri-Fink A, Rothen-Rutishauser B (2013) Bioavailability of silver nanoparticles and ions: from a chemical and biochemical perspective. J R Soc Interface 10(87):20130396

    Article  Google Scholar 

  • Benn T, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42(11):4133–4139

    Article  CAS  Google Scholar 

  • Bolognesi C, Bruzzi P, Gismondi V, Volpi S, Viassolo V, Pedemonte S, Varesco L (2014) Clinical application of micronucleus test: a case-control study on the prediction of breast cancer risk/susceptibility. PLoS One 9(11):e112354

    Article  Google Scholar 

  • Boukamp P, Petrussevska R, Breitkreutz D, Hornung J, Markham A, Fusenig N (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106(3):761–771

    Article  CAS  Google Scholar 

  • Browning L, Lee K, Nallathamby P, Xu X-HN (2013) Silver nanoparticles incite size- and dose-dependent developmental phenotypes and nanotoxicity in zebrafish embryos. Chem Res Toxicol 26(10):1503–1513

    Article  CAS  Google Scholar 

  • Butler KS, Peeler DJ, Casey BJ, Dair BJ, Elespuru RK (2015) Silver nanoparticles: correlating nanoparticle size and cellular uptake with genotoxicity. Mutagenesis 30(4):577–591

    Article  CAS  Google Scholar 

  • Carrola J, Bastos V, Ferreira de Oliveira JMM, Oliveira H, Santos C, Gil AM, Duarte IF (2016) Insights into the impact of silver nanoparticles on human keratinocytes metabolism through NMR metabolomics. Arch Biochem Biophys 589:53–61

    Article  CAS  Google Scholar 

  • Castiglioni S, Caspani C, Cazzaniga A, Maier JA (2014) Short-and long-term effects of silver nanoparticles on human microvascular endothelial cells. World J Biol Chem 5(4):457

    Article  Google Scholar 

  • Chen X, Schluesener H (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176:1–12

    Article  CAS  Google Scholar 

  • Chunyan W, Valiyaveettil S (2013) Correlation of biocapping agents with cytotoxic effects of silver nanoparticles on human tumor cells. RSC Adv 3(34):14329–14338

    Article  CAS  Google Scholar 

  • Collins AR (2004) The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol 26(3):249–261

    Article  CAS  Google Scholar 

  • Comfort KK, Maurer EI, Hussain SM (2014) Slow release of ions from internalized silver nanoparticles modifies the epidermal growth factor signaling response. Colloids Surf B Biointerfaces 123:136–142

    Article  CAS  Google Scholar 

  • Dusinska M, Magdolenova Z, Fjellsbø LM (2013) Toxicological aspects for nanomaterial in humans. Methods Mol Biol 948:1–12

    CAS  Google Scholar 

  • Eckhardt S, Brunetto P, Gagnon J, Priebe M, Giese B, Fromm K (2013) Nanobio silver: its interactions with peptides and bacteria, and its uses in medicine. Chem Rev 113(7):4708–4754

    Article  CAS  Google Scholar 

  • Eom H-JJ, Choi J (2010) p38 MAPK activation, DNA damage, cell cycle arrest and apoptosis as mechanisms of toxicity of silver nanoparticles in Jurkat T cells. Environ Sci Technol 44(21):8337–8342

    Article  CAS  Google Scholar 

  • Fenech M (2007) Cytokinesis-block micronucleus cytome assay. Nat Protoc 2(5):1084–1104

    Article  CAS  Google Scholar 

  • Franchi LP, Manshian BB, de Souza TA, Soenen SJ, Matsubara EY, Rosolen JM, Takahashi CS (2015) Cyto-and genotoxic effects of metallic nanoparticles in untransformed human fibroblast. Toxicol in Vitro 29(7):1319–1331

    Article  CAS  Google Scholar 

  • Gong C, Tao G, Yang L, Liu J, He H, Zhuang Z (2012) The role of reactive oxygen species in silicon dioxide nanoparticle-induced cytotoxicity and DNA damage in HaCaT cells. Mol Biol Rep 39(4):4915–4925

    Article  CAS  Google Scholar 

  • Gonzalez L, Lison D, Kirsch-Volders M (2008) Genotoxicity of engineered nanomaterials: a critical review. Nanotoxicology 2(4):252–273

    Article  Google Scholar 

  • Grosse S, Evje L, Syversen T (2013) Silver nanoparticle-induced cytotoxicity in rat brain endothelial cell culture. Toxicol in Vitro 27(1):305–313

    Article  CAS  Google Scholar 

  • Gurr JR, Wang AS, Chen CH, Jan KY (2005) Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213(1):66–73

    Article  CAS  Google Scholar 

  • Hackenberg S, Scherzed A, Kessler M, Hummel S, Technau A, Froelich K, Ginzkey C, Koehler C, Hagen R, Kleinsasser N (2011) Silver nanoparticles: evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol Lett 201(1):27–33

    Article  CAS  Google Scholar 

  • Hillegass JM, Shukla A, Lathrop SA, MacPherson MB, Fukagawa NK, Mossman BT (2010) Assessing nanotoxicity in cells in vitro. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(3):219–231

    Article  CAS  Google Scholar 

  • Jiang X, Foldbjerg R, Miclaus T, Wang L, Singh R, Hayashi Y, Sutherland D, Chen C, Autrup H, Beer C (2013) Multi-platform genotoxicity analysis of silver nanoparticles in the model cell line CHO-K1. Toxicol Lett 222(1):55–63

    Article  CAS  Google Scholar 

  • Karlsson HL (2010) The comet assay in nanotoxicology research. Anal Bioanal Chem 398(2):651–666

    Article  CAS  Google Scholar 

  • Kawata K, Osawa M, Okabe S (2009) In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ Sci Technol 43(15):6046–6051

    Article  CAS  Google Scholar 

  • Knaapen AM, Borm PJA, Albrecht C (2004a) Inhaled particles and lung cancer. Part a: mechanisms. Int J Cancer 109(6):799–809

    Article  CAS  Google Scholar 

  • Knaapen AM, Borm PJA, Albrecht C, Schins RPF (2004b) Inhaled particles and lung cancer. Part a: mechanisms. Int J Cancer 109(6):799–809

    Article  CAS  Google Scholar 

  • Kuroda S, Tam J, Roth JA, Sokolov K, Ramesh R (2014) EGFR-targeted plasmonic magnetic nanoparticles suppress lung tumor growth by abrogating G2/M cell-cycle arrest and inducing DNA damage. Int J Nanomedicine 9:3825–3839

    CAS  Google Scholar 

  • Landsiedel R, Kapp MD, Schulz M, Wiench K (2009) Genotoxicity investigations on nanomaterials: methods, preparation and characterization of test material, potential artifacts and limitations many questions, some answers. Mutat Res 681(2):241–258

    Article  CAS  Google Scholar 

  • Li Y, Zhang Y, Yan B (2014) Nanotoxicity overview: nano-threat to susceptible populations. Int J Mol Sci 15(3):3671–3697

    Article  CAS  Google Scholar 

  • Liccardi G, Hartley JA, Hochhauser D (2011) EGFR nuclear translocation modulates DNA repair following cisplatin and ionizing radiation treatment. Cancer Res 71(3):1103–1114

    Article  CAS  Google Scholar 

  • Liu P, Guan R, Ye X, Jiang J, Liu M (2011) Toxicity of nano-and micro-sized silver particles in human hepatocyte cell line L02. J Phys Conf Ser 304(1):012036 IOP Publishing

    Article  Google Scholar 

  • Manke A, Wang L, Rojanasakul Y (2013) Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int 2013:942916

    Article  Google Scholar 

  • Milić M, Leitinger G, Pavičić I, Zebić Avdičević M, Dobrović S, Goessler W, Vinković Vrček I (2015) Cellular uptake and toxicity effects of silver nanoparticles in mammalian kidney cells. J Appl Toxicol 35(6):581–592

    Article  Google Scholar 

  • Nowack B, Bucheli T (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150(1):5–22

    Article  CAS  Google Scholar 

  • Nowack B, Krug H, Height M (2011) 120 years of nanosilver history: implications for policy makers. Environ Sci Technol 45(4):1177–1183

    Article  CAS  Google Scholar 

  • Orta-García ST, Plascencia-Villa G, Ochoa-Martínez AC, Ruiz-Vera T, Pérez-Vázquez FJ, Velázquez-Salazar JJ, Yacamán MJ, Navarro-Contreras HR, Pérez-Maldonado IN (2015) Analysis of cytotoxic effects of silver nanoclusters on human peripheral blood mononuclear cells ‘in vitro’. J Appl Toxicol 35(10):1189–1199

    Article  Google Scholar 

  • Piao MJ, Kang KA, Lee IK, Kim HS, Kim S, Choi JY, Choi J, Hyun JW (2011) Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett 201(1):92–100

    Article  CAS  Google Scholar 

  • Promtong P (2015) Determinants of Silver Nanoparticle Toxicity. Dissertation, University of Manchester

  • Pumera M (2011) Nanotoxicology: the molecular science point of view. Chem Asian J 6(2):340–348

    Article  CAS  Google Scholar 

  • Rinna A, Magdolenova Z, Hudecova A, Kruszewski M, Refsnes M, Dusinska M (2015) Effect of silver nanoparticles on mitogen-activated protein kinases activation: role of reactive oxygen species and implication in DNA damage. Mutagenesis 30(1):59–66

    Article  CAS  Google Scholar 

  • Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175(1):184–191

  • Singh N, Manshian B, Jenkins GJS, Griffiths SM (2009) NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30(23):3891–3914

    Article  CAS  Google Scholar 

  • Smita S, Gupta S, Bartonova A, Dusinska M, Gutleb A, Rahman Q (2012) Nanoparticles in the environment: assessment using the causal diagram approach. Environ Health 11(Suppl 1):S13

    Article  Google Scholar 

  • Souza TA, Franchi LP, Rosa LR, da Veiga MAA, Takahashi CS (2016) Cytotoxicity and genotoxicity of silver nanoparticles of different sizes in CHO-K1 and CHO-XRS5 cell lines. Mutat Res Genet Toxicol Environ Mutagen 795:70–83

    Article  CAS  Google Scholar 

  • Stoll SW, Benedict M, Mitra R, Hiniker A, Elder JT, Nuñez G (1998) EGF receptor signaling inhibits keratinocyte apoptosis: evidence for mediation by Bcl-XL. Oncogene 16(11):1493–1499

    Article  CAS  Google Scholar 

  • Terry LJ, Shows EB, Wente SR (2007) Crossing the nuclear envelope: hierarchical regulation of nucleocytoplasmic transport. Science 318(5855):1412–1416

    Article  CAS  Google Scholar 

  • Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35(3):206–21

  • Tolaymat TM, El Badawy AM, Genaidy A, Scheckel KG, Luxton TP, Suidan M (2010) An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Sci Total Environ 408(5):999–1006

    Article  CAS  Google Scholar 

  • Toyokuni S (1998) Oxidative stress and cancer: the role of redox regulation. Biotherapy 11(2–3):147–154

    Article  CAS  Google Scholar 

  • Twentyman P, Luscombe M (1987) A study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. Br J Cancer 56(3):279–285

    Article  CAS  Google Scholar 

  • Vrček IV, Zuntar I, Petlevski R, Pavičić I, Dutour Sikirić M, Curlin M, Goessler W (2014) Comparison of in vitro toxicity of silver ions and silver nanoparticles on human hepatoma cells. Environ Toxicol

  • Wang JJ, Sanderson BJ, Wang H (2007) Cyto-and genotoxicity of ultrafine TiO 2 particles in cultured human lymphoblastoid cells. Mutat Res 628(2):99–106

    Article  CAS  Google Scholar 

  • Wang X, Ji Z, Chang CH, Zhang H, Wang M, Y-PP L, Lin S, Meng H, Li R, Sun B, Winkle LV, Pinkerton KE, Zink JI, Xia T, Nel AE (2014) Use of coated silver nanoparticles to understand the relationship of particle dissolution and bioavailability to cell and lung toxicological potential. Small 10(2):385–398

    Article  CAS  Google Scholar 

  • Watson C, Ge J, Cohen J, Pyrgiotakis G, Engelward BP, Demokritou P (2014) High-throughput screening platform for engineered nanoparticle-mediated genotoxicity using CometChip technology. ACS Nano 8(3):2118–2133

    Article  CAS  Google Scholar 

  • Xu L, Li X, Takemura T, Hanagata N, Wu G, Chou LL (2012) Genotoxicity and molecular response of silver nanoparticle (NP)-based hydrogel. J Nanobiotechnology 10(16):1–11

    Article  Google Scholar 

  • Zanette C, Pelin M, Crosera M, Adami G, Bovenzi M, Larese FF, Florio C (2011) Silver nanoparticles exert a long-lasting antiproliferative effect on human keratinocyte HaCaT cell line. Toxicol in Vitro 25(5):1053–1060

    Article  CAS  Google Scholar 

  • Zhang T, Wang L, Chen Q, Chen C (2014) Cytotoxic potential of silver nanoparticles. Yonsei Med J 55(2):283–291

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been funded by the European Regional Development Fund (FEDER) through the Competitive Factors Thematic Operational Programme (COMPETE) and by National Funds through the Foundation for Science and Technology (FCT), under the projects CICECO - FCOMP-01-0124-FEDER-037271 (Refª. FCT PEst-C/CTM/LA0011/2013) and FCOMP-01-0124-FEDER-021456 (Refª. FCT PTDC/SAU-TOX/120953/2010). The grants awarded by FCT to V.B. (SFRH/BD/81792/2011) and H.O. (SFRH/BPD/111736/2015) are also acknowledged. I.F.D acknowledges FCT/MCTES for a research contract under the Program ‘Investigador FCT’ 2014.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Santos or H. Oliveira.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Communicated by: Markus Hecker

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bastos, V., Duarte, I.F., Santos, C. et al. Genotoxicity of citrate-coated silver nanoparticles to human keratinocytes assessed by the comet assay and cytokinesis blocked micronucleus assay. Environ Sci Pollut Res 24, 5039–5048 (2017). https://doi.org/10.1007/s11356-016-8240-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-8240-6

Keywords

Navigation