Skip to main content

Advertisement

Log in

Assessment of the effects of the carbamazepine on the endogenous endocrine system of Daphnia magna

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In the present study, the endocrine activity of the antiepileptic pharmaceutical carbamazepine (CBZ) in the crustacean Daphnia magna was assessed. To assess the hormonal activity of the drug, we exposed maternal daphnids and embryos to environmental relevant concentrations of CBZ (ranging from 10 to 200 μg/L) and to mixtures of CBZ with fenoxycarb (FEN; 1 μg/L). Chronic exposure to CBZ significantly decreased the reproductive output and the number of molts of D. magna at 200 μg/L. This compound induced the production of male offspring (12 ± 1.7 %), in a non-concentration-dependent manner, acting as a weak juvenile hormone analog. Results showed that this substance, at tested concentrations, did not antagonize the juvenoid action of FEN. Further, CBZ has shown to be toxic to daphnid embryos through maternal exposure interfering with their normal gastrulation and organogenesis stages but not producing direct embryo toxicity. These findings suggest that CBZ could act as an endocrine disruptor in D. magna as it decreases the reproductive output, interferes with sex determination, and causes development abnormality in offspring. Therefore, CBZ could directly affect the population sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abe R, Toyota K, Miyakawa H, Watanabe H, Oka T, Miyagawa S, Nishide H, Uchiyama I, Tollefsen KE, Iguchi T, Tatarazako N (2015) Diofenolan induces male offspring production through binding to the juvenile hormone receptor in Daphnia magna. Aquat Toxicol 159:44–51

    Article  CAS  Google Scholar 

  • Almeida A, Calisto V, Esteves VI, Schneider RJ, Soares AMVM, Figueira E, Freitas R (2014) Presence of the pharmaceutical drug carbamazepine in coastal systems: effects on bivalves. Aquat Toxicol 156:74–87

    Article  CAS  Google Scholar 

  • Andreozzi R, Marotta R, Pinto G, Pollio A (2002) Carbamazepine in water: persistence in the environment, ozonation treatment and preliminary assessment on algal toxicity. Water Res 36:2869–2877

    Article  CAS  Google Scholar 

  • ASTM (American Society of Testing Materials) (1998) Standard practice for conducting toxicity tests with fishes, microinvertebrates and amphibians. E729-90. In: Annual Book of ASTM Standards. American Society of Testing Materials, Philadelphia. p 271–296

  • Bahlmann A, Carvalho JJ, Weller MG, Panne U, Schneider RJ (2012) Immunoassays as high-throughput tools: monitoring spatial and temporal variations of carbamazepine, caffeine and cetirizine in surface and wastewaters. Chemosphere 89:1278–1286

    Article  CAS  Google Scholar 

  • Baird DJ, Barata C (1998) Genetic variation in the response of Daphnia to toxic substances: implications for risk assessment. In: Forbes VE (ed) Genetic and ecotoxicology. Taylor and Francis, Philadelphia, USA, pp 207–220

    Google Scholar 

  • Baird DJ, Barber I, Bradley M, Calow P, Soares AMVM (1989) The Daphnia bioassay: a critique. Hydrobiologia 188–189:403–406

    Article  Google Scholar 

  • Barbosa IR, Nogueira AJA, Soares AMVM (2008) Acute and chronic effects of testosterone and 4-hydroxyandrostenedione to the crustacean Daphnia magna. Ecotoxicol Environ Safe 71(3):757–764

    Article  CAS  Google Scholar 

  • Besse JP, Garric J (2008) Human pharmaceuticals in surface waters: implementation of a prioritization methodology and application to the French situation. Toxicol Lett 176:104–123

    Article  CAS  Google Scholar 

  • Calisto V, Domingues MRM, Erny GL, Esteves VI (2011) Direct photodegradation of carbamazepine followed by micellar electrokinetic chromatography and mass spectrometry. Water Res 45:1095–1104

    Article  CAS  Google Scholar 

  • Chang ES (1993) Comparative endocrinology of moulting and reproduction: insects and crustaceans. Annu Rev Entomol 38:161–180

    Article  CAS  Google Scholar 

  • Cleuvers M (2003) Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicol Lett 142:185–194

    Article  CAS  Google Scholar 

  • Conley JM, Symes SJ, Schorr MS, Richards SM (2008) Spatial and temporal analysis of pharmaceuticals concentrations in the upper Tennessee River Basin. Chemosphere 73:1178–1187

    Article  CAS  Google Scholar 

  • Corcoran J, Winter CJ, Tyler CR (2010) Pharmaceuticals in the aquatic environment: a critical review of the evidence for health effects in fish. Crit Rev Toxicol 40(4):287–304

    Article  CAS  Google Scholar 

  • Crane M, Watts C, Boucard T (2006) Chronic aquatic environmental risks from exposure to human pharmaceuticals. Toxicol In Vitro 17:525–532

    Google Scholar 

  • Daughton C, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect 107:907–938

    Article  CAS  Google Scholar 

  • Dietrich S, Florian P, Franz B, Christian L (2010) Single and combined toxicity of pharmaceuticals at environmentally realistic concentrations in Daphnia magna: a multigenerational study. Chemosphere 79:60–66

    Article  CAS  Google Scholar 

  • Ferrari B, Paxéus N, Lo Giudice R, Pollio A, Garric J (2003) Ecotoxicological impact of pharmaceuticals found in treated wastewaters: study of carbamazepine, clofibric acid, and diclofenac. Ecotoxicol Environ Saf 55:359–370

    Article  CAS  Google Scholar 

  • Finney DJ (1971) Probit analysis. UK. Cambridge University Press, Cambridge

    Google Scholar 

  • Gaffney VJ, Almeida CMM, Rodrigues A, Ferreira E, Benoliel MJ, Cardoso VV (2015) Occurrence of pharmaceuticals in a water supply system and related human health risk assessment. Water Res 72:199–208

    Article  Google Scholar 

  • Galus M, Kirischian N, Higgins S, Purdy J, Chow J, Rangaranjan S, Li H, Metcalfe C, Wilson JY (2013) Chronic, low concentration exposure to pharmaceuticals impacts multiple organ systems in zebrafish. Aquat Toxicol 132–133:200–211

    Article  Google Scholar 

  • Galus M, Rangarajan S, Lai A, Shaya L, Balshine S, Wilson JY (2014) Effects of chronic, parental pharmaceutical exposure on zebrafish (Danio rerio) offspring. Aquat Toxicol 151:124–134

    Article  CAS  Google Scholar 

  • Gunamalai V, Kirubagaran R, Subramoniam T (2004) Hormonal coordination of molting and female reproduction by ecdysteroids in the mole crab Emerita asiatica (Milne Edwards). Gen Comp Endocrinol 138:128–138

    Article  CAS  Google Scholar 

  • ISO 6341 (1996) Water quality—determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea)—acute toxicity test. International Organization for Standardisation. Geneve, Switzerland

  • Jos A, Repetto G, Rios JC, Hazen MJ, Molero ML, Peso AD, Salguero M, Fernández-Freire P, Pérez-Martín JM, Cameán A (2003) Ecotoxicological evaluation of carbamazepine using six different model systems with eighteen endpoints. Toxicol In Vitro 17(5):525–532

    Article  CAS  Google Scholar 

  • Kast-Hutcheson K, Rider CV, LeBlanc GA (2001) The fungicide propiconazole interferes with embryonic development of the crustacean Daphnia magna. Environ Toxicol 20:502–509

    Article  CAS  Google Scholar 

  • Kleiven OT, Larsson P, Hobaek A (1992) Sexual reproduction in Daphnia magna requires three stimuli. Oikos 65:197–206

    Article  Google Scholar 

  • Lamichhane K, Garcia SN, Huggett DB, De Angelis DL, La Point TW (2013) Chronic effects of carbamazepine on life-history strategies of Ceriodaphnia dubia in three successive generations. Arch Environ Contam Toxicol 64:427–438

    Article  CAS  Google Scholar 

  • LeBlanc GA (2007) Crustacean endocrine toxicology: a review. Ecotoxicology 16:61–81

    Article  CAS  Google Scholar 

  • LeBlanc GA, Xueyan M, Rider CV (2000) Embryotoxicity of the alkylphenol degradation product 4-nonylphenol to the crustacean Daphnia magna. Environ Health Perspect 108:1133–1138

    Article  CAS  Google Scholar 

  • Lovett Doust L, Lovett Doust J, Schmidt M (1993) In praise of plants as biomonitors send in the clones. Funct Ecol 7:754–758

    Google Scholar 

  • Lürling M, Sargant E, Roessink I (2006) Life-history consequences for Daphnia pulex exposed to pharmaceutical carbamazepine. Environ Toxicol 21(2):172–180

    Article  Google Scholar 

  • Madureira TV, Rocha MJ, Cruzeiro C, Galante MH, Monteiro RAF, Rocha E (2011) The toxicity potential of pharmaceuticals found in the Douro River estuary (Portugal): assessing impacts on gonadal maturation with a histopathological and stereological study of zebrafish ovary and testis after sub-acute exposures. Aquat Toxicol 105:292–299

    Article  CAS  Google Scholar 

  • Martin-Creuzburg D, Westerlund SA, Hoffmann KH (2007) Ecdysteroid levels in Daphnia magna during a molt cycle: determination by radioimmunoassay (RIA) and liquid chromatography–mass spectrometry (LC-MS). Gen Comp Endocrinol 151:66–71

    Article  CAS  Google Scholar 

  • Martin-Diaz L, Franzellitti S, Buratti S, Valbonesi P, Capuzzo A, Fabbri E (2009) Effects of environmental concentrations of the antiepilectic drug carbamazepine on biomarkers and cAMP-mediated cell signaling in the mussel Mytilus galloprovincialis. Aquat Toxicol 94:177–185

    Article  CAS  Google Scholar 

  • Miyakawa H, Toyota K, Hirakawa I, Ogino Y, Miyagawa S, Oda S, Tatarazako N, Miura T, Colbourne JK, Iguchi T (2013) A mutation in the receptor methoprene-tolerant alters juvenile hormone response in insects and crustaceans. Nat Commun 4:1856

    Article  Google Scholar 

  • Mu X, LeBlanc GA (2002a) Environmental antiecdysteroids alter embryo development in the crustacean Daphnia magna. J Exp Zool 292:287–292

    Article  CAS  Google Scholar 

  • Mu X, LeBlanc GA (2002b) Development toxicity of testosterone in the crustacean Daphnia magna involves antiecdysteroidal activity. Gen Comp Endocrinol 129:127–133

    Article  CAS  Google Scholar 

  • Mu X, LeBlanc GA (2004) Cross communication between signalling pathways: juvenoid hormones modulate ecdysteroid activity in crustacean. J Exp Zool 301A:793–801

    Article  CAS  Google Scholar 

  • Nijhout HF (1994) Insect hormones. Princeton University Press, Princeton

    Google Scholar 

  • Oda S, Tatarazako N, Watanabe H, Morita M, Iguchi T (2005) Production of male neonates in Daphnia magna (Cladocera, Crustacea) exposed to juvenile hormones and their analogs. Chemosphere 61:1168–1174

    Article  CAS  Google Scholar 

  • Oda S, Tatarazako N, Watanabe H, Morita M, Iguchi T (2006) Genetic differences in the production of male neonates in Daphnia magna exposed to juvenile hormone analogs. Chemosphere 63:1477–1484

    Article  CAS  Google Scholar 

  • OECD (Organization for Economic Cooperation and Development) (2004) Daphnia sp., acute immobilization test. In: OECD Guidelines for Testing of Chemicals No. 202. Organization for Economic Cooperation and Development, Paris

  • OECD (Organization for Economic Cooperation and Development) (2012) Daphnia magna, reproduction test. In: OECD Guidelines for Testing of Chemicals No. 211. Organization for Economic Cooperation and Development, Paris

  • Olmstead AW, LeBlanc GA (2002) Juvenoid hormone methyl farnesoate is a sex determinant in the crustacean Daphnia magna. J Exp Zool 293:736–739

    Article  CAS  Google Scholar 

  • Olmstead AW, LeBlanc GA (2003) Insecticidal juvenile hormone analogs stimulate the production of male offspring in the crustacean Daphnia magna. Environ Health Perspect 111:919–924

    Article  CAS  Google Scholar 

  • Palma PADB (2009c) Avaliação da actividade juvenóide no sistema endócrino do crustáceo Daphnia magna, dos pesticidas atrazina, endossulfão sulfato e clorpirifos. Dissertação apresentada para obtenção do Grau de Doutor em Farmácia, Especialidade Toxicologia, Coimbra (in Português)

  • Palma P, Palma VL, Matos C, Fernandes RM, Bohn A, Soares AMVM, Barbosa IR (2009a) Assessment of the pesticides atrazine, endosulfan sulphate and chlorpyrifos for juvenoid-related endocrine activity using Daphnia magna. Chemosphere 76:335–340

    Article  CAS  Google Scholar 

  • Palma P, Palma VL, Matos C, Fernandes RM, Bohn A, Soares AMVM, Barbosa IR (2009b) Effects of atrazine and endosulfan sulphate on the ecdysteroid system of Daphnia magna. Chemosphere 74:676–681

    Article  CAS  Google Scholar 

  • Palma P, Palma VL, Fernandes RM, Bohn A, Soares AMVM, Barbosa IR (2009c) Embryo-toxic effects of environmental concentrations of chlorpyrifos on the crustacean Daphnia magna. Ecotoxicol Environ Safe 72:1714–1718

    Article  CAS  Google Scholar 

  • Palma P, Palma VL, Fernandes RM, Soares AMVM, Barbosa IR (2009d) Endosulfan sulphate interferes with reproduction, embryonic development and sex differentiation in Daphnia magna. Ecotoxicol Environ Safe 72:344–350

    Article  CAS  Google Scholar 

  • Pfluger P, Dietrich DR (2001) Effects on pharmaceuticals in the environment—an overview and principle considerations. In: Kümmerer K (ed) Pharmaceuticals in the environment—sources, fate. Effects and Risks. Springer, Berlin, pp 11–17

    Google Scholar 

  • Shyama SK (1987) Studies on moulting and reproduction in the prawn Macrobrachium idella (hellar). Mahasagar-Bull Natl Inst Oceanog 20:15–21

    Google Scholar 

  • Sobral O, Chastinet C, Nogueira A, Soares AMVM, Gonçalves F, Ribeiro R (2001) In vitro development of parthenogenetic eggs: a fast ecotoxicity test with Daphnia magna. Ecotoxicol Environ Safe 50:174–179

    Article  CAS  Google Scholar 

  • Subramoniam T (2000) Crustacean ecdysteroids in reproduction and embryogenesis. Comp Biochem Physiol 125:135–156

    CAS  Google Scholar 

  • Sumiya E, Ogino O, Miyakawa H, Hiruta C, Toyota K, Miyagawa S, Iguchi T (2014) Roles of ecdysteroids for progression of reproductive cycle in the fresh water crustacean Daphnia magna. Frontiers in Zoology 11:60

    Article  Google Scholar 

  • Tatarazako N, Oda S (2007) The water flea Daphnia magna (Crustacea, Cladocera) as a test species for screening and evaluation of chemicals with endocrine disrupting effects on crustaceans. Ecotoxicology 16:197–203

    Article  CAS  Google Scholar 

  • Tatarazako N, Oda S, Watanabe H, Morita M, Iguchi T (2003) Juvenile hormone agonists affect the occurrence of male Daphnia. Chemosphere 53:827–833

    Article  CAS  Google Scholar 

  • Tatarazako N, Oda S, Abe R, Morita M, Iguchi T (2004) Development of a screening method for endocrine disruptors in crustaceans using Daphnia magna (Cladocera, Crustacea). Environ Sci 17:439–449

    Google Scholar 

  • Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32:3245–3260

    Article  CAS  Google Scholar 

  • Thacker PD (2005) Pharmaceutical data elude researchers. Environ Sci Technol 39:193A–194A

    CAS  Google Scholar 

  • Toumi H, Boumaiza M, Millet M, Radetski CM, Felten V, Fouque C, Férard JF (2013) Effects of deltamethrin (pyrethroid insecticide) on growth, reproduction, embryonic development and sex differentiation in two strains of Daphnia magna (Crustacea, Cladocera). Sci Total Environ 458–460:47–53

    Article  Google Scholar 

  • Toyota K, Miyakawa H, Hiruta C, Furuta K, Ogino Y, Shinoda T, Tatarazako N, Miyagawa S, Shaw JR, Iguchi T (2015) Methyl farnesoate synthesis is necessary for the environmental sex determination in the water flea Daphnia pulex. J Insect Physiol 80:22–30

    Article  CAS  Google Scholar 

  • Tsiaka P, Tsarpali V, Ntaikou I, Kostopoulou MN, Lyberatos G, Dailianis S (2013) Carbamazepine mediated pro-oxidant effects on the unicellular marine algal species Dunaliella tertiolecta and the hemocytes of mussel Mytilus galloprovincialis. Ecotoxicology 22(8):1208–1220

    Article  CAS  Google Scholar 

  • Valcarcel Y, Gonzalez AS, Rodriguez-Gil JL, Gil A, Catala M (2011) Detection of pharmaceutically active compounds in the rivers and tap water of the Madrid region (Spain) and potential ecotoxicological risk. Chemosphere 84(10):1336–1348

    Article  CAS  Google Scholar 

  • Van den Brandhof EJ, Montforts M (2010) Fish embryo toxicity of carbamazepine, diclofenac and metoprolol. Ecotoxicol Environ Safe 73(8):1862–1866

    Article  Google Scholar 

  • Wang HY, Olmstead AW, Li H, LeBlanc GA (2005) The screening of chemicals for juvenoid-related endocrine activity using the water flea Daphnia magna. Aquat Toxicol 74:193–204

    Article  CAS  Google Scholar 

  • Wang KS, Lu CY, Chang SH (2011) Evaluation of acute toxicity and teratogenic effects of plants growth regulators by Daphnia magna embryo assay. J Hazard Mater 190:520–528

  • Zeilinger J, Steger-Hartmann T, Maser E, Goller S, Vonk R, Länge R (2009) Effects of synthetic gestagens on fish reproduction. Environ Toxicol Chem 28(12):2663–2670

    Article  CAS  Google Scholar 

  • Zhang Y, Geissen S, Gal C (2008) Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 73:1151–1161

    Article  CAS  Google Scholar 

  • Zhang W, Zhang M, Lin K, Sun W, Xiong B, Guo M, Cui X, Fu R (2012) Eco-toxicological effect of carbamazepine on Scenedesmus obliquus and Chlorella pyrenoidosa. Environ Toxicol Pharmacol 33(2):344–352

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We express our sincere gratitude to Guerreiro J (student who collaborated in the experimental phase of this research). We are grateful to Nozes P and Gonçalves C (Laboratório de Biologia, Escola Superior Agrária de Beja, Portugal), Beltrán FJ and Sagasti JJP (Departamento de Ingeniería Química y Química Física, University of Extremadura, Spain), and Rodríguez Medina PL (Departamento de Producción Animal y Ciencia de los Alimentos, University of Extremadura, Spain) for their technical assistance. Authors also wish to thanks the financial support given to Oropesa AL by Ministerio de Educación, Cultura y Deporte (Spain), within the Programa Estatal de Promoción del Talento y su Empleabilidad en I + D + i, Subprograma Estatal de Movilidad, del Plan Estatal de Investigación Científica y Técnica y de Innovación 2013–2016 through a post-doctoral research grant (CAS14-00224).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Oropesa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Cinta Porte

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oropesa, A.L., Floro, A.M. & Palma, P. Assessment of the effects of the carbamazepine on the endogenous endocrine system of Daphnia magna . Environ Sci Pollut Res 23, 17311–17321 (2016). https://doi.org/10.1007/s11356-016-6907-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6907-7

Keywords

Navigation