Skip to main content
Log in

Microbial community structures and metabolic profiles response differently to physiochemical properties between three landfill cover soils

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Landfills are always the most important part of solid waste management and bear diverse metabolic activities involved in element biogeochemical cycling. There is an increasing interest in understanding the microbial community and activities in landfill cover soils. To improve our knowledge of landfill ecosystems, we determined the microbial physiological profiles and communities in three landfill cover soils (Ninghai: NH, Xiangshan: XS, and Fenghua: FH) of different ages using the MicroRespTM, phospholipid fatty acid (PLFA), and high-throughput sequencing techniques. Both total PLFAs and glucose-induced respiration suggested more active microorganisms occurred in intermediate cover soils. Microorganisms in all landfill cover soils favored l-malic acid, ketoglutarate, and citric acid. Gram-negative bacterial PLFAs predominated in all samples with the representation of 16:1ω7, 18:1ω7, and cy19:0 in XS and NH sites. Proteobacteria dominated soil microbial phyla across different sites, soil layers, and season samples. Canonical correspondence analysis showed soil pH, dissolved organic C (DOC), As, and total nitrogen (TN) contents significantly influenced the microbial community but TN affected the microbial physiological activities in both summer and winter landfill cover soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abichou T, Chanton J, Powelson D et al (2006) Methane flux and oxidation at two types of intermediate landfill covers. Waste Manag 26:1305–1312

    Article  CAS  Google Scholar 

  • Aciego Pietri J, Brookes P (2009) Substrate inputs and pH as factors controlling microbial biomass, activity and community structure in an arable soil. Soil Biol Biochem 41:1396–1405

    Article  CAS  Google Scholar 

  • Anderson TH (2003) Microbial eco-physiological indicators to asses soil quality. Agric Ecosyst Environ 98:285–293

    Article  Google Scholar 

  • Azarbad H, Niklińska M, van Gestel CAM et al (2013) Microbial community structure and functioning along metal pollution gradients. Environ Toxicol Chem 32:1992–2002

    Article  CAS  Google Scholar 

  • Bååth E (1996) Adaptation of soil bacterial communities to prevailing pH in different soils. FEMS Microbiol Ecol 19:227–237

    Article  Google Scholar 

  • Bérard A, Capowiez L, Mombo S, et al. (2015) Soil microbial respiration and PICT responses to an industrial and historic lead pollution: a field study. Environ Sci Pollut R 08/2015; DOI:10.1007/s11356-015-5089-z

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Phys 37:911–917

    Article  CAS  Google Scholar 

  • Bogner JE, Spokas KA, Chanton JP (2011) Seasonal greenhouse gas emissions (methane, carbon dioxide, nitrous oxide) from engineered landfills: daily, intermediate, and final California cover soils. J Environ Qual 40:1010–1020

    Article  CAS  Google Scholar 

  • Börjesson G, Sundh I, Tunlid A, Svensson BH (1998) Methane oxidation in landfill cover soils, as revealed by potential oxidation measurements and phospholipid fatty acid analyses. Soil Biol Biochem 30:1423–1433

    Article  Google Scholar 

  • Bull ID, Parekh NR, Hall GH et al (2000) Detection and classification of atmospheric methane oxidizing bacteria in soil. Nature 405:175–178

    Article  CAS  Google Scholar 

  • Burrell PC, O’Sullivan C, Song H et al (2004) Identification, detection, and spatial resolution of Clostridium populations responsible for cellulose degradation in a methanogenic landfill leachate bioreactor. Appl Environ Microbiol 70:2414–2419

    Article  CAS  Google Scholar 

  • Campbell CD, Chapman SJ, Cameron CM et al (2003) A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl Environ Microbiol 69:3593–3599

    Article  CAS  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  Google Scholar 

  • Chen CR, Xu ZH, Zhang SL, Keay P (2005) Soluble organic nitrogen pools in forest soils of subtropical Australia. Plant Soil 277:285–297

    Article  CAS  Google Scholar 

  • Cleveland CC, Nemergut DR, Schmidt SK, Townsend AR (2006) Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition. Biogeochemistry 82:229–240

    Article  Google Scholar 

  • Degens BP, Schipper LA, Sparling GP et al (2000) Decreases in organic C reserves in soils can reduce the catabolic diversity of soil microbial communities. Soil Biol Biochem 32:189–196

    Article  CAS  Google Scholar 

  • Deng Q, Cheng X, Hui D et al (2016) Soil microbial community and its interaction with soil carbon and nitrogen dynamics following afforestation in central China. Sci Total Environ 541:230–237

    Article  CAS  Google Scholar 

  • Ding LJ, Su JQ, Xu HJ et al (2015) Long-term nitrogen fertilization of paddy soil shifts iron-reducing microbial community revealed by RNA-13C-acetate probing coupled with pyrosequencing. ISME J 9:721–734

    Article  CAS  Google Scholar 

  • Farquhar G (1989) Leachate: production and characterization. Can J Civ Eng 16:317–325

    Article  Google Scholar 

  • Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364

    Article  Google Scholar 

  • Flis S, Glenn A, Dilworth M (1993) The interaction between aluminium and root nodule bacteria. Soil Biol Biochem 25:403–417

    Article  CAS  Google Scholar 

  • Gomez AM, Yannarell AC, Sims GK et al (2011) Characterization of bacterial diversity at different depths in the Moravia Hill landfill site at Medellín, Colombia. Soil Biol Biochem 43:1275–1284

    Article  CAS  Google Scholar 

  • Grayston S, Campbell C, Bardgett R et al (2004) Assessing shifts in microbial community structure across a range of grasslands of differing management intensity using CLPP, PLFA and community DNA techniques. Appl Soil Ecol 25:63–84

    Article  Google Scholar 

  • Griggs D, Stafford-Smith M, Gaffney O et al (2013) Policy: sustainable development goals for people and planet. Nature 495:305–307

    Article  CAS  Google Scholar 

  • Guan YD, Du YH, Ji HF et al (2012a) Assessment of abandoned unsanitary landfills in rural areas of Ningbo, China. Asian J Chem 24:1185–90

    CAS  Google Scholar 

  • Guan YD, Du YH, Li ZD et al (2012b) Assessing soil and plant pollution by abandoned rural waste dumping sites in Ningbo, China. Appl Mech Mater 138:1149–55

    Google Scholar 

  • He Y, Li Z, Yao L et al (2014) Molecular phylogenetic analysis of dominant microbial populations in aged refuse. World J of Microb Biotechnol 30:1037–1045

    Article  Google Scholar 

  • He Y, Xia W, Li X et al (2015) Dissipation of phenanthrene and pyrene at the aerobic–anaerobic soil interface: differentiation induced by the rhizosphere of PAH-tolerant and PAH-sensitive rice (Oryza sativa L.) cultivars. Environ Sci Pollut Res 22:3908–3919

  • Henneberger R, Chiri E, Bodelier PE et al (2015) Field -scale tracking of active methane‐oxidizing communities in a landfill cover soil reveals spatial and seasonal variability. Environ Microbiol 5:1721–1737

    Article  Google Scholar 

  • Hettiaratchi JPA, Perera MDN, Viswanthan C, et al. (1998) Design of landfill cover systems incorporating soil methanotrophy for methane emission mitigation. In Fourth International Symposium on Environmental Geotechnology and Global Sustainable Development, Boston, MA (pp. 1540–1550).

  • Hinojosa MB, Carreira JA, García-Ruíz R, Dick RP (2005) Microbial response to heavy metal-polluted soils. J Environ Qual 34:1789–1800

    Article  CAS  Google Scholar 

  • Hu M, Wang X, Wen X et al (2012) Microbial community structures in different wastewater treatment plants as revealed by 454-pyrosequencing analysis. Bioresource Technol 117:72–79

    Article  CAS  Google Scholar 

  • Huang L-N, Zhu S, Zhou H, Qu L-H (2005) Molecular phylogenetic diversity of bacteria associated with the leachate of a closed municipal solid waste landfill. FEMS Microbiol Lett 242:297–303

    Article  CAS  Google Scholar 

  • Huang Z, Xu Z, Chen C (2008) Effect of mulching on labile soil organic matter pools, microbial community functional diversity and nitrogen transformations in two hardwood plantations of subtropical Australia. Appl Soil Ecol 40:229–239

    Article  Google Scholar 

  • Jiang Y, Chen C, Xu Z, Liu Y (2012) Effects of single and mixed species forest ecosystems on diversity and function of soil microbial community in subtropical China. J Soils Sediments 12:228–240

    Article  Google Scholar 

  • Kaiser C, Frank A, Wild B et al (2010) Negligible contribution from roots to soil-borne phospholipid fatty acid fungal biomarkers 18:2ω6,9 and 18:1ω9. Soil Biol Biochem 42:1650–1652

    Article  CAS  Google Scholar 

  • Kaur A, Chaudhary A, Kaur A et al (2005) Phospholipid fatty acid—a bioindicator of environment monitoring and assessment in soil ecosystem. Curr Sci-BANGALORE 89:1103

    CAS  Google Scholar 

  • Kemmitt SJ, Wright D, Goulding KW, Jones DL (2006) pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biol Biochem 38:898–911

    Article  CAS  Google Scholar 

  • Kjeldsen P, Barlaz MA, Rooker AP et al (2002) Present and long-term composition of MSW landfill leachate: a review. Crit Rev Env Sci Technol 32:297–336

    Article  CAS  Google Scholar 

  • Köchling T, Sanz JL, Gavazza S, Florencio L (2015) Analysis of microbial community structure and composition in leachates from a young landfill by 454 pyrosequencing. Appl Microbiol Biotechnol 99:5657–5668

    Article  Google Scholar 

  • Lauber CL, Strickland MS, Bradford MA et al (2008) The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol Biochem 40:2407–2415

    Article  CAS  Google Scholar 

  • Lerch TZ, Dignac MF, Nunan N et al (2009) Dynamics of soil microbial populations involved in 2,4-D biodegradation revealed by FAME-based stable isotope probing. Soil Biol Biochem 41:77–85

    Article  CAS  Google Scholar 

  • Lepleux C, Turpault MP, Oger P et al (2012) Correlation of the abundance of Betaproteobacteria on mineral surfaces with mineral weathering in forest soils. Appl Environ Microbiol 78:7114–7119

    Article  CAS  Google Scholar 

  • Manzoni S, Taylor P, Richter A et al (2012) Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytol 196:79–91

  • Martin F, Torelli S, Le Paslier D et al (2012) Betaproteobacteria dominance and diversity shifts in the bacterial community of a PAH-contaminated soil exposed to phenanthrene. Environ Pollut 162:345–353

    Article  CAS  Google Scholar 

  • Maxfield PJ, Hornibrook ERC, Evershed RP (2006) Estimating high-affinity methanotrophic bacterial biomass, growth, and turnover in soil by phospholipid fatty acid 13C labeling. Appl Environ Microbiol 72:3901–3907

    Article  CAS  Google Scholar 

  • Murtagh F, Pierre L (2014) Ward’s hierarchical agglomerative clustering method: which algorithms implement ward’s criterion? J Classif 31:274–295

    Article  Google Scholar 

  • Oksanen J, Blanchet G, Kindt R et al (2010) Vegan: community ecology package. R package version 1:17–1

    Google Scholar 

  • Paterson E, Thornton B, Midwood AJ et al (2008) Atmospheric CO2 enrichment and nutrient additions to planted soil increase mineralisation of soil organic matter, but do not alter microbial utilisation of plant- and soil C-sources. Soil Biol Biochem 40:2434–2440

    Article  CAS  Google Scholar 

  • Pen-Mouratov S, Shukurov N, Yu J et al (2014) Successive development of soil ecosystems at abandoned coal-ash landfills. Ecotoxicology 23:880–897

    Article  CAS  Google Scholar 

  • Remon E, Bouchardon JL et al (2005) Soil characteristics, heavy metal availability and vegetation recovery at a former metallurgical landfill: implications in risk assessment and site restoration. Environ Pollut 137:316–323

    Article  CAS  Google Scholar 

  • Roesch LFW, Fulthorpe RR, Riva A et al (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290

    CAS  Google Scholar 

  • Rousk J, Brookes PC, Bååth E (2009) Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl Environ Microbiol 75:1589–1596

    Article  CAS  Google Scholar 

  • Sadasivam BY, Reddy KR (2014) Landfill methane oxidation in soil and bio-based cover systems: a review. Rev Environ Sci Biotechnol 13:79–107

    Article  CAS  Google Scholar 

  • Sawamura H, Yamada M, Endo K et al (2010) Characterization of microorganisms at different landfill depths using carbon-utilization patterns and 16S rRNA gene based T-RFLP. J Biosci Bioeng 109:130–137

    Article  CAS  Google Scholar 

  • Semrau JD (2011) Current knowledge of microbial community structures in landfills and its cover soils. Appl Microbiol Biotechnol 89:961–969

    Article  CAS  Google Scholar 

  • Shange RS, Ankumah RO, Ibekwe AM et al (2012) Distinct soil bacterial communities revealed under a diversely managed agroecosystem. PLoS ONE 7:e40338

    Article  CAS  Google Scholar 

  • Shrestha PM, Malvankar NS, Werner JJ et al (2014) Correlation between microbial community and granule conductivity in anaerobic bioreactors for brewery wastewater treatment. Bioresour Technol 174:306–310

    Article  CAS  Google Scholar 

  • Smit E, Leeflang P, Gommans S et al (2001) Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods. Appl Environ Microbiol 67:2284–2291

    Article  CAS  Google Scholar 

  • Song L, Wang Y, Tang W, Lei Y (2015a) Bacterial community diversity in municipal waste landfill sites. Appl Microbiol Biotechnol 1–12

  • Song L, Wang Y, Tang W et al (2015a) Archaeal community diversity in municipal waste landfill sites. Appl Microbiol Biotechnol 99:6125–6137

    Article  CAS  Google Scholar 

  • Tringe SG, Von Mering C, Kobayashi A et al (2005) Comparative metagenomics of microbial communities. Science 308:554–557

    Article  CAS  Google Scholar 

  • Wakelin SA, Macdonald LM, Rogers SL et al (2008) Habitat selective factors influencing the structural composition and functional capacity of microbial communities in agricultural soils. Soil Biol Biochem 40:803–813

    Article  CAS  Google Scholar 

  • White DC, Davis WM, Nickels JS et al (1979) Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia 40:51–62

    Article  Google Scholar 

  • Xu H (2008) All the waste in China—the development of sanitary landfilling. Waste Manag World 4:60–67

    Google Scholar 

  • Yang N, Zhang H, Shao L-M et al (2013) Greenhouse gas emissions during MSW landfilling in China: influence of waste characteristics and LFG treatment measures. J Environ Manag 129:510–521

    Article  CAS  Google Scholar 

  • Yao H, Campbell CD, Qiao X (2011) Soil pH controls nitrification and carbon substrate utilization more than urea or charcoal in some highly acidic soils. Biol Fertil Soils 47:515–522

    Article  CAS  Google Scholar 

  • Yao Y, Su Y, Wu Y et al (2015) An analytical model for estimating the reduction of methane emission through landfill cover soils by methane oxidation. J Hazard Mater 283:871–879

    Article  CAS  Google Scholar 

  • Yergeau E, Schoondermark-Stolk SA, Brodie EL et al (2009) Environmental microarray analyses of Antarctic soil microbial communities. ISME J 3:340–351

    Article  CAS  Google Scholar 

  • Zarda B, Hahn D, Chatzinotas A et al (1997) Analysis of bacterial community structure in bulk soil by in situ hybridization. Arch Microbiol 168:185–192

    Article  CAS  Google Scholar 

  • Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biol Fertil Soils 29:111–129

    Article  CAS  Google Scholar 

  • Zelles L, Bai Q, Ma R et al (1994) Microbial biomass, metabolic activity and nutritional status determined from fatty acid patterns and poly-hydroxybutyrate in agriculturally-managed soils. Soil Biol Biochem 26:439–446

    Article  CAS  Google Scholar 

  • Zhang W, Yue B, Wang Q et al (2011) Bacterial community composition and abundance in leachate of semi-aerobic and anaerobic landfills. J Environ Sci 23:1770–1777

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (41525002), the Natural Science Foundation of Zhejiang Province, People’s Republic of China (LY14C030001) and the Knowledge Innovation Program of the Chinese Academy of Sciences (IUEQN-2012-07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaiying Yao.

Additional information

Responsible editor: Robert Duran

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(DOC 455 kb)

Fig. S2

(DOC 80 kb)

Fig. S3

(DOC 81 kb)

Fig. S4

(DOC 50 kb)

Fig. S5

(DOC 51 kb)

Fig. S6

(DOC 113 kb)

Fig. S7

(DOC 94 kb)

Table S1

(DOC 41 kb)

Table S2

(DOC 36 kb)

Table S3

(DOC 32 kb)

Table S4

(DOC 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, XE., Wang, J., Huang, Y. et al. Microbial community structures and metabolic profiles response differently to physiochemical properties between three landfill cover soils. Environ Sci Pollut Res 23, 15483–15494 (2016). https://doi.org/10.1007/s11356-016-6681-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6681-6

Keywords

Navigation