Skip to main content
Log in

Nanoscale zero-valent metals: a review of synthesis, characterization, and applications to environmental remediation

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Engineered nanoscale zero-valent metals (NZVMs) representing the forefront of technologies have been considered as promising materials for environmental remediation and antimicrobial effect, due to their high reducibility and strong adsorption capability. This review is focused on the methodology for synthesis of bare NZVMs, supported NZVMs, modified NZVMs, and bimetallic systems with both traditional and green methods. Recent studies have demonstrated that self-assembly methods can play an important role for obtaining ordered, controllable, and tunable NZVMs. In addition to common characterization methods, the state-of-the-art methods have been developed to obtain the properties of NZVMs (e.g., granularity, size distribution, specific surface area, shape, crystal form, and chemical bond) with the resolution down to subnanometer scale. These methods include spherical aberration corrected scanning transmission electron microscopy (Cs-corrected STEM), electron energy-loss spectroscopy (EELS), and near edge X-ray absorption fine structure (NEXAFS). A growing body of experimental data has proven that nanoscale zero-valent iron (NZVI) is highly effective and versatile. This article discusses the applications of NZVMs to treatment of heavy metals, halogenated organic compounds, polycyclic aromatic hydrocarbons, nutrients, radioelements, and microorganisms, using both ex situ and in situ methods. Furthermore, this paper briefly describes the ecotoxicological effects for NZVMs and the research prospects related to their synthesis, modification, characterization, and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdelwahab NA, Shukry N (2015) Synthesis, characterization and antimicrobial properties of grafted sugarcane bagasse/silver nanocomposites. Carbohydr Polym 115:276–284

    Article  CAS  Google Scholar 

  • Ahamed MIN (2014) Ecotoxicity concert of nano zero-valent iron particles—a review. J Crit Rev 1:36–39

    Google Scholar 

  • Anderson DM, Glibert PM, Burkholder JM (2002) Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25:704–726

    Article  Google Scholar 

  • Ashida T, Miura K, Nomobo T, Yagi S, Sumida H, Kutluk G, Soda K, Namatame H, Taniguchi M (2007) Synthesis and characterization of Rh (PVP) nanoparticles studied by XPS and NEXAFS. Surf Sci 601:3898–3901

    Article  CAS  Google Scholar 

  • Bahgat M, Ahmed YMZ (2008) Synthesis of nanocrystalline metallic iron from secondary iron oxide resources. Min Proc Ext Met 117:18–22

    Article  CAS  Google Scholar 

  • Bai P, Zhu G, Liu Y, Chen J, Jing Q, Yang W, Ma J (2013) Cylindrical rotating triboelectric nanogenerator. ACS Nano 7:6361–6366

    Article  CAS  Google Scholar 

  • Bai H, Wang C, Chen J, Peng J, Cao Q (2015) A novel sensitive electrochemical sensor based on in-situ polymerized molecularly imprinted membranes at graphene modified electrode for artemisinin determination. Biosen Bioelectron 64:352–358

    Article  CAS  Google Scholar 

  • Ben-Sasson M, Lu X, Bar-Zeev E, Zodrow KR, Nejati S, Qi G, Giannelis EP, Elimelec M (2014) In situ formation of silver nanoparticles on thin-film composite reverse osmosis membranes for biofouling mitigation. Water Res 62:260–270

    Article  CAS  Google Scholar 

  • Bezbaruah AN, Kalita H, Almeelbi T, Capecchi CL, Jacob DL, Ugrinov AG, Payne SA (2014) Ca–alginate-entrapped nanoscale iron: arsenic treatability and mechanism studies. J Nanopart Res 16:1–10

    Article  Google Scholar 

  • Binh ND, Imsapsangworn C, Kim Oanh NT, Parkpian P, Karstensen K, Giao PH, DeLaune RD (2016) Sequential anaerobic-aerobic biodegradation of 2,3,7,8-TCDD contaminated soil in the presence of CMC-coated nZVI and surfactant. Environ Technol 37:388–398

    Article  CAS  Google Scholar 

  • Cai Y, Liang B, Fang Z, Xie Y, Tsang EP (2015) Effect of humic acid and metal ions on the debromination of BDE209 by nZVM prepared from steel pickling waste liquor. Front Environ Sci Eng 9:879–887

    Article  CAS  Google Scholar 

  • Cao H, Li B, Zhang J, Lian F, Kong X, Qu M (2012) Synthesis and superior anode performance of TiO2@reduced graphene oxide nanocomposites for lithium ion batteries. J Mater Chem 22:9759–9766

    Article  CAS  Google Scholar 

  • Careghini A, Mastorgio AF, Saponaro S, Sezenna E (2015) Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: a review. Environ Sci Pollut Res Int 22:5711–5741

    Article  CAS  Google Scholar 

  • Celebi O, Uzum C, Shahwan T, Erten HN (2007) A radiotracer study of the adsorption behavior of aqueous Ba(2+) ions on nanoparticles of zero-valent iron. J Hazard Mater 148:761–767

    Article  CAS  Google Scholar 

  • Chan J, Safavi-Naeini AH, Hill J, Meenehan S, Paiter O (2012) Optimized optomechanical crystal cavity with acoustic radiation shield. Appl Phys Lett 101:1–3

    Google Scholar 

  • Chang MC, Shu HY, Hsieh WP, Wang MC (2005) Using nanoscale zero-valent iron for the remediation of polycyclic aromatic hydrocarbons contaminated soil. J Air Waste Manag Assoc 55:1200–1207

    Article  CAS  Google Scholar 

  • Chen DH, He XR (2001) Synthesis of nickel ferrite nanoparticles by sol-gel method. Mater Res Bull 36:1369–1377

    Article  CAS  Google Scholar 

  • Chen CF, Binh NT, Chen CW, Dong CD (2015) Removal of polycyclic aromatic hydrocarbons from sediments using sodium persulfate activated by temperature and nanoscale zero-valent iron. J Air Waste Manage Assoc 65:375–383. doi:10.1080/10962247.2014.996266

    Article  CAS  Google Scholar 

  • Cheng SF, Wu SC (2000) The enhancement methods for the degradation of TCE by zero-valent metals. Chemosphere 41:1263–1270

    Article  CAS  Google Scholar 

  • Chhowalla M, Teo KBK, Ducati C, Rupesinghe NL, Amaratunga GAJ, Ferrari AC, Roy D, Robertson J, Milne WI (2001) Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J Appl Phys 90:5308–5317

    Article  CAS  Google Scholar 

  • Chin PP, Ding J, Yi JB, Liu BH (2005) Synthesis of FeS2 and FeS nanoparticles by high-energy mechanical milling and mechanochemical processing. J Alloy Compd 390:255–260

    Article  CAS  Google Scholar 

  • Choe S, Lee SH, Chang YY, Hwang KY, Khim J (2001) Rapid reductive destruction of hazardous organic compounds by nanoscale Fe0. Chemosphere 42:367–372

    Article  CAS  Google Scholar 

  • Choi JH, Kim YH (2009) Reduction of 2,4,6-trichlorophenol with zero-valent zinc and catalyzed zinc. J Hazard Mater 166:984–991

    Article  CAS  Google Scholar 

  • Chong KP (2008) Nano science and engineering in solid mechanics. Acta Mech Solida Sin 21:95–103

    Article  Google Scholar 

  • Chu G (2009) Characterisation of microstructure and properties of nano-copper powders prepared by flow levitation method. Powder Metall 52:84–86

    Article  CAS  Google Scholar 

  • Cong HP, Ren XC, Wang P, Yu SH (2012) Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano 6:2693–2703

    Article  CAS  Google Scholar 

  • Corcione C, Frigione M (2012) Characterization of nanocomposites by thermal analysis. Materials 5:2960–2980

    Article  CAS  Google Scholar 

  • Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211–212:112–125

    Article  CAS  Google Scholar 

  • Datta KKR, Petala E, Datta KJ, Perman JA, Tucek J, Bartak P, Otyepaka M, Zoppellaro G, Zboril R (2014) NZVI modified magnetic filter paper with high redox and catalytic activities for advanced water treatment technologies. Chem Coummun 50:15673–15676

    Article  CAS  Google Scholar 

  • de Godoi FC, Rodriguez-Castellon E, Guibal E, Beppu MM (2013) An XPS study of chromate and vanadate sorption mechanism by chitosan membrane containing copper nanoparticles. Chem Eng J 234:423–429

    Article  CAS  Google Scholar 

  • de Godoi FC, Rabelo RB, Silva MA, Rodríguez-Castellón E, Guibal E, Beppu MM (2014) Introduction of copper nanoparticles in chitosan matrix as strategy to enhance chromate adsorption. Chem Eng Process: Process Intensification 83:43–48

    Article  CAS  Google Scholar 

  • Dorjee P, Amarasiriwardena D, Xing B (2014) Antimony adsorption by zero-valent iron nanoparticles (nZVI): ion chromatography–inductively coupled plasma mass spectrometry (IC–ICP-MS) study. Microchem J 116:15–23

    Article  CAS  Google Scholar 

  • El-Temsah YS, Joner EJ (2012) Ecotoxicological effects on earthworms of fresh and aged nano-sized zero-valent iron (nZVI) in soil. Chemosphere 89:76–82

    Article  CAS  Google Scholar 

  • Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517–531

    Article  CAS  Google Scholar 

  • Fang Z, Qiu X, Chen J, Qiu X (2010) Degradation of metronidazole by nanoscale zero-valent metal prepared from steel pickling waste liquor. Appl Cataly B: Environ 100:221–228

    Article  CAS  Google Scholar 

  • Fennelly JP, Roberts AL (1998) Reaction of 1,1,1-trichloroethane with zero-valent metals and bimetallic reductants. Environ Sci Technol 32:1980–1988

    Article  CAS  Google Scholar 

  • Gago R, Vázquez L, Cuerno R, Varela M, Ballesteros C, Albella JM (2001) Production of ordered silicon nanocrystals by low-energy ion sputtering. Appl Phys Lett 78:3316–3318

    Article  CAS  Google Scholar 

  • Genc R, Clergeaud G, Ortiz M, O’Sullivan C (2014) Shape directed biomineralization of gold nanoparticles using self-assembled lipid structures. Biomater Sci 2:1128–1134

    Article  CAS  Google Scholar 

  • Ghasemzadeh G, Momenpour M, Omidi F, Hosseini MR, Ahani M, Barzegari A (2014) Applications of nanomaterials in water treatment and environmental remediation. Front Environ Sci Eng 8:471–482

    Article  CAS  Google Scholar 

  • Giasuddin ABM, Kanel SR, Choi H (2007) Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal. Environ Sci Technol 41:2022–2027

    Article  CAS  Google Scholar 

  • Gondikas AP, Morris A, Reinsch BC, Marinakos SM, Lowry GV, Hsu-Kim H (2012) Cysteine-induced modifications of zero-valent silver nanomaterials: implications for particle surface chemistry, aggregation, dissolution, and silver speciation. Environ Sci Technol 46:7037–7045

    Article  CAS  Google Scholar 

  • Grieger KD, Hansen SF, Sorensen PB, Baun A (2011) Conceptual modeling for identification of worst case conditions in environmental risk assessment of nanomaterials using nZVI and C60 as case studies. Sci Total Environ 409:4109–4124

    Article  CAS  Google Scholar 

  • Groza N, Radulescu R, Panturu E, Filcenco-Olteanu A, Panturu RI (2009) Zero-valent iron used for radioactive waste water treatment. Chem Bull 54:21–25

    Google Scholar 

  • Guan X, Sun Y, Qin H, Li J, Lo IMC, He D, Dong H (2015) The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994–2014). Water Res 75:224–248. doi:10.1016/j.watres.2015.02.034

    Article  CAS  Google Scholar 

  • Gunawardana B, Singhal N, Swedlund P (2011) Degradation of chlorinated phenols by zero valent iron and bimetals of iron: a review. Environ Eng Res 16:187–203

    Article  Google Scholar 

  • Guo S, Wang E (2011) Noble metal nanomaterials: controllable synthesis and application in fuel cells and analytical sensors. Nano Today 6:240–264

    Article  CAS  Google Scholar 

  • Han C, Nagendra V, Nasir Baig RB, Varma RS, Nadagouda MN (2015) Expeditious synthesis of noble metal nanoparticles using vitamin B12 under microwave irradiation. Appl Sci 5:415–426

    Article  Google Scholar 

  • Hu X, Zhou Q (2013) Health and ecosystem risks of graphene. Chem Rev 113:3815–3835

    Article  CAS  Google Scholar 

  • Hu J, Zhang X, Wang Z (2010) A review on progress in QSPR studies for surfactants. Int J Mol Sci 11:1020–1047

    Article  CAS  Google Scholar 

  • Hu JW, Zhuang Y, Luo J, Wei XH, Huang XF (2012) A theoretical study on reductive debromination of polybrominated diphenyl ethers. Int J Mol Sci 13:9332–9342

    Article  CAS  Google Scholar 

  • Huang R, Fang Z, Yan X, Cheng W (2012) Heterogeneous sono-Fenton catalytic degradation of bisphenol A by Fe3O4 magnetic nanoparticles under neutral condition. Chem Eng J 197:242–249

    Article  CAS  Google Scholar 

  • Huang J, Zang J, Zhao Y, Dong L, Wang Y (2014) One-step synthesis of nanocrystalline TiO2-coated carbon nanotube support for Pt electrocatalyst in direct methanol fuel cell. Mater Lett 137:335–338

    Article  CAS  Google Scholar 

  • Jabeen H, Chandra V, Jung S, Lee JW, Kim KS, Kim SB (2011) Enhanced Cr(VI) removal using iron nanoparticle decorated graphene. Nanoscale 3:3583–3585

    Article  CAS  Google Scholar 

  • Jabeen H, Kemp KC, Chandra V (2013) Synthesis of nano zerovalent iron nanoparticles—graphene composite for the treatment of lead contaminated water. J Environ Manage 130:429–435

    Article  CAS  Google Scholar 

  • Jain S, Verma S (2014) Nanosized zinc peroxide (ZnO2): a novel inorganic oxidant for the oxidation of aromatic alcohols to carbonyl compounds. Inorg Chem Front 1:534–539

    Article  Google Scholar 

  • Jakšić Z, Matovic J (2010) Functionalization of artificial freestanding composite nanomembranes. Materials 3:165–200

    Article  CAS  Google Scholar 

  • Janiak C (2014) Metal nanoparticle synthesis in ionic liquids. Ionic liquids (ILs) in organometallic catalysis Volume 51 of the series Topics in organometallic chemistry pp 17–53

  • Jegadeesan G, Mondal K, Lalvani SB (2005) Arsenate remediation using nanosized modified zerovalent iron particles. Environ Prog 24:289–296

    Article  CAS  Google Scholar 

  • Jiang X, Qiao J, Lo IMC, Wang L, Guan X, Lu Z, Zhou G, Xu C (2015) Enhanced paramagnetic Cu(2)(+) ions removal by coupling a weak magnetic field with zero valent iron. J Hazard Mater 283:880–887

    Article  CAS  Google Scholar 

  • Jiao TF, Gao FQ, Shen XH, Zhang QR, Zhang XF, Zhou JX, Gao FM (2013) Self-assembly and nanostructures in organogels based on a bolaform cholesteryl imide compound with conjugated aromatic spacer. Materials 6:5893–5906

    Article  CAS  Google Scholar 

  • Joseph D, Geckeler KE (2014) Synthesis of highly fluorescent gold nanoclusters using egg white proteins. Colloid Surf B Biointerf 115:46–50

    Article  CAS  Google Scholar 

  • Ju-Nam Y, Lead JR (2008) Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ 400:396–414

    Article  CAS  Google Scholar 

  • Kafle K, Shi R, Lee CM, Mittal A, Park YB, Sun Y-H, Park S, Chiang V, Kim SH (2014) Vibrational sum-frequency-generation (SFG) spectroscopy study of the structural assembly of cellulose microfibrils in reaction woods. Cellulose 21:2219–2231

    Article  CAS  Google Scholar 

  • Kanel SR, Choi H (2007) Transport characteristics of surface-modified nanoscale zero-valent iron in porous media. Water Sci Technol 55:157. doi:10.2166/wst.2007.002

    Article  CAS  Google Scholar 

  • Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39:1291–1298

    Article  CAS  Google Scholar 

  • Kanel SR, Nepal D, Manning B, Choi H (2007) Transport of surface-modified iron nanoparticle in porous media and application to arsenic(III) remediation. J Nanopart Res 9:725–735

    Article  CAS  Google Scholar 

  • Kim YH, Carraway ER (2003) Dechlorination of chlorinated phenols by zero valent zinc. Environ Technol 24:1455–1463

    Article  CAS  Google Scholar 

  • Kim H, Hong HJ, Lee YJ, Shin HJ, Yang JW (2008) Degradation of trichloroethylene by zero-valent iron immobilized in cationic exchange membrane. Desalination 223:212–220

    Article  CAS  Google Scholar 

  • Kong Q, Ngo HH, Shu L, Fu R, Jiang C, Miao M (2014) Enhancement of aerobic granulation by zero-valent iron in sequencing batch airlift reactor. J Hazard Mater 279:511–517

    Article  CAS  Google Scholar 

  • Kuang Y, Wang Q, Chen Z, Megharaj M, Naidu R (2013) Heterogeneous Fenton-like oxidation of monochlorobenzene using green synthesis of iron nanoparticles. J Colloid Interface Sci 410:67–73

    Article  CAS  Google Scholar 

  • Kumar M, Chakraborty S (2006) Chemical denitrification of water by zero-valent magnesium powder. J Hazard Mater 135:112–121

    Article  CAS  Google Scholar 

  • Kumar S, Ahlawat W, Bhanjana G, Heydarifard S, Nazhad MM, Dilbaghi N (2014) Nanotechnology-based water treatment strategies. J Nanosci Nanotechnol 14:1838–1858

    Article  CAS  Google Scholar 

  • Kuroiwa K, Masaki Y, Koga Y, Deming TJ (2013) Self-assembly of discrete metal complexes in aqueous solution via block copolypeptide amphiphiles. Int J Mol Sci 14:2022–2035

    Article  CAS  Google Scholar 

  • Landa P, Vanlova R, Andrlova J, Hodek J, Marsik P, Storchova H, White JC, Vanek T (2012) Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot. J Hazard Mater 241–242:55–62

    Article  CAS  Google Scholar 

  • Lee CL, Wan CC, Wang YY (2001) Synthesis of metal nanoparticles via self-regulated reduction by an alcohol surfactant. Adv Funct Mater 11:344–347

    Article  CAS  Google Scholar 

  • Lee C, Kim JY, Lee WI, Nelson KL, Yoon J, Sedlak DL (2008) Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environ Sci Technol 42:4927–4933

    Article  CAS  Google Scholar 

  • Li W, Zhao D (2013) An overview of the synthesis of ordered mesoporous materials. Chem Commun 49:943–946

    Article  CAS  Google Scholar 

  • Li A, Tai C, Zhao Z, Wang Y, Zhang Q, Jiang G, Hu J (2007a) Debromination of decabrominated diphenyl ether by resin-bound iron nanoparticles. Environ Sci Technol 41:6841–6846

    Article  CAS  Google Scholar 

  • Li Q, Wang L-S, Hu B-Y, Yang C, Zhou L, Zhang L (2007b) Preparation and characterization of NiO nanoparticles through calcination of malate gel. Mater Lett 61:1615–1618

    Article  CAS  Google Scholar 

  • Li C, Du Z, Yu H, Wang T (2009) Low-temperature sensing and high sensitivity of ZnO nanoneedles due to small size effect. Thin Solid Films 517:5931–5934

    Article  CAS  Google Scholar 

  • Li M, Feng C, Zhang Z, Chen R, Xue Q, Gao C, Sugiura N (2010) Optimization of process parameters for electrochemical nitrate removal using Box–Behnken design. Electrochim Acta 56:265–270

    Article  CAS  Google Scholar 

  • Li B, Cao H, Shao J, Qu M, Warner JH (2011a) Superparamagnetic Fe3O4 nanocrystals@graphene composites for energy storage devices. J Mater Chem 21:5069–5075

    Article  CAS  Google Scholar 

  • Li B, Cao H, Shao J, Zheng H, Lu Y, Yin J, Qu M (2011b) Improved performances of beta-Ni(OH)2@reduced-graphene-oxide in Ni-MH and Li-ion batteries. Chem Commun 47:3159–3161. doi:10.1039/c0cc04507a

    Article  CAS  Google Scholar 

  • Li B, Cao H, Yin G (2011c) Mg(OH)2@reduced graphene oxide composite for removal of dyes from water. J Mater Chem 21:13765–13768

    Article  CAS  Google Scholar 

  • Li M, Feng C, Zhang Z, Liu X, Ma W, Xue Q, Sugiura N (2011d) Optimization of electrochemical ammonia removal using Box–Behnken design. J Electroanal Chem 657:66–73

    Article  CAS  Google Scholar 

  • Li B, Cao H, Yin J, Wu YA, Warner JH (2012) Synthesis and separation of dyes via Ni@reduced graphene oxide nanostructures. J Mater Chem 22:1876–1883

    Article  CAS  Google Scholar 

  • Li BB, Clements WR, Yu XC, Shi K, Gong Q, Xiao YF (2014a) Single nanoparticle detection using split-mode microcavity Raman lasers. Proc NatI Acad Sci USA 111:14657–14662

    Article  CAS  Google Scholar 

  • Li LY, Lin YM, Hu JW (2014b) A QSPR Study on debromination of PBDEs with CPCM solvation model. Adv Mater Res 1010–1012:3–9

    Google Scholar 

  • Li LY, Lin YM, Hu JW (2014c) A study on pathway and QSPR models for debromination of PBDEs with pseudopotential method. Adv Mater Res 997:25–32

    Article  Google Scholar 

  • Li J, Chen C, Zhang R, Wang X (2015a) Nanoscale zero-valent iron particles supported on reduced graphene oxides by using a plasma technique and their application for removal of heavy-metal ions. Chem, Asian J 10:1410–1417

    Article  CAS  Google Scholar 

  • Li J, Qin H, Guan X (2015b) Premagnetization for enhancing the reactivity of multiple zerovalent iron samples toward various contaminants. Environ Sci Technol 49:14401–14408

    Article  CAS  Google Scholar 

  • Liang L, Yang W, Guan X, Li J, Xu Z, Wu J, Huang Y, Zhang X (2013) Kinetics and mechanisms of pH-dependent selenite removal by zero valent iron. Water Res 47:5846–5855

    Article  CAS  Google Scholar 

  • Liang B, Xie Y, Fang Z, Tsang EP (2014) Assessment of the transport of polyvinylpyrrolidone-stabilised zero-valent iron nanoparticles in a silica sand medium. J Nanopart Res 16:1–11

    Google Scholar 

  • Lin J, Zhou W, Kumbhar A, Wiemann J, Fang J, Carpenter EE, O’Connor CJ (2001) Gold-coated iron (Fe@Au) nanoparticles: synthesis, characterization, and magnetic field-induced self-assembly. J Solid State Chem 159:26–31

    Article  CAS  Google Scholar 

  • Lin CJ, Liou YH, Lo SL (2009a) Supported Pd/Sn bimetallic nanoparticles for reductive dechlorination of aqueous trichloroethylene. Chemosphere 74:314–319

    Article  CAS  Google Scholar 

  • Lin J, Zong R, Zhou M, Zhu Y (2009b) Photoelectric catalytic degradation of methylene blue by C60-modified TiO2 nanotube array. Appl Catal B Environ 89:425–431

    Article  CAS  Google Scholar 

  • Lin PC, Lin S, Wang PC, Sridhar R (2014) Techniques for physicochemical characterization of nanomaterials. Biotechnol Adv 32:711–726

    Article  Google Scholar 

  • Liou YH, Lo SL, Lin CJ, Kuan WH, Weng SC (2005) Chemical reduction of an unbuffered nitrate solution using catalyzed and uncatalyzed nanoscale iron particles. J Hazard Mater 127:102–110

    Article  CAS  Google Scholar 

  • Liou YH, Lo SL, Kuan WH, Lin CJ, Weng SC (2006) Effect of precursor concentration on the characteristics of nanoscale zerovalent iron and its reactivity of nitrate. Water Res 40:2485–2492

    Article  CAS  Google Scholar 

  • Liu H, Webster TJ (2007) Nanomedicine for implants: a review of studies and necessary experimental tools. Biomaterials 28:354–369

    Article  CAS  Google Scholar 

  • Liu A, Zhang W (2014) Fine structural features of nanoscale zero-valent iron characterized by spherical aberration corrected scanning transmission electron microscopy (Cs-STEM). Analyst 139:4512–4518

    Article  CAS  Google Scholar 

  • Liu HB, Chen TH, Chang DY, Chen D, Liu Y, He HP, Yuan P, Frost R (2012a) Nitrate reduction over nanoscale zero-valent iron prepared by hydrogen reduction of goethite. Mater Chem Phys 133:205–211

    Article  CAS  Google Scholar 

  • Liu JF, Yu S, Yg Y, Jb C (2012b) Methods for separation, identification, characterization and quantification of silver nanoparticles. TrAC Trend Anal Chem 33:95–106

    Article  CAS  Google Scholar 

  • Liu F, Yang J, Zou J, Ma D, Gan L, Xie B (2014) Graphene-supported nanoscale zero-valent iron: removal of phosphorus from aqueous solution and mechanistic study. J Environ Sci 26:1751–1762

    Article  CAS  Google Scholar 

  • Lu H, Qiao X, Wang W, Tan F, Sun F, Xiao Z, Chen J (2015a) Effective removal of cadmium ions from aqueous solution using chitosan-stabilized nano zero-valent iron. Desalin Water Treat 56:256–265

    Article  CAS  Google Scholar 

  • Lu X, Song C, Jia S, Tong Z, Tang X, Teng Y (2015b) Low-temperature selective catalytic reduction of NOX with NH3 over cerium and manganese oxides supported on TiO2–graphene. Chem Eng J 260:776–784

    Article  CAS  Google Scholar 

  • Luo J, Hu J, Wei X, Fu L, Li L (2015a) Dehalogenation of persistent halogenated organic compounds: a review of computational studies and quantitative structure-property relationships. Chemosphere 131:17–33

    Article  CAS  Google Scholar 

  • Luo J, Hu J, Wei X, Li L, Huang X (2015b) Excited states and photodebromination of selected polybrominated diphenyl ethers: computational and quantitative structure–property relationship studies. Int J Mol Sci 16:1160–1178

    Article  CAS  Google Scholar 

  • Lv X, Xu J, Jiang G, Xu X (2011) Removal of chromium(VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes. Chemosphere 85:1204–1209

    Article  CAS  Google Scholar 

  • Lv X, Xue X, Jiang G, Wu D, Sheng T, Zhou H, Xu X (2014) Nanoscale zero-valent iron (nZVI) assembled on magnetic Fe3O4/graphene for chromium (VI) removal from aqueous solution. J Colloid Interface Sci 417:51–59

    Article  CAS  Google Scholar 

  • Macchione MA, Douglas-Gallardo OA, Perez LA, Passarelli N, Moiraghi R, Spitale A, Bahena D, Oliva FY, Mariscal MM, Jose-Yacaman M, Coronado EA, Macagno VA, Perez MA (2014) One-step/one-pot decoration of oxide microparticles with silver nanoparticles. J Colloid Interface Sci 428:32–35

    Article  CAS  Google Scholar 

  • Masciangioli T, Zhang WX (2003) Environmental technologies at the nanoscale. Environ Sci Technol 37:102A–108A

    Article  CAS  Google Scholar 

  • Masnadi M, Yao N, Braidy N, Moores A (2015) Cu(II) galvanic reduction and deposition onto iron nano- and microparticles: resulting morphologies and growth mechanisms. Langmuir: ACS J Surf Colloids 31:789–798. doi:10.1021/la503598b

    Article  CAS  Google Scholar 

  • Miranzadeh M, Kassaee MZ (2014) Solvent effects on arc discharge fabrication of durable silver nanopowder and its application as a recyclable catalyst for elimination of toxic p-nitrophenol. Chem Eng J 257:105–111

    Article  CAS  Google Scholar 

  • Mosaferi M, Nemati S, Khataee A, Nasseri S, Hashemi AA (2014) Removal of arsenic(III, V) from aqueous solution by nanoscale zero-valent iron stabilized with starch and carboxymethyl cellulose. J Environ Health Sci Eng 12:74

    Article  Google Scholar 

  • Nadagouda MN, Varma RS (2007) A greener synthesis of core (Fe, Cu)-shell (Au, Pt, Pd, and Ag) nanocrystals using aqueous vitamin C. Cryst Growth Des 7:2582–2587

    Article  CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2011) Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv Colloid Interface Sci 169:59–79

    Article  CAS  Google Scholar 

  • Nasir Baig RB, Varma RS (2012) A facile one-pot synthesis of ruthenium hydroxide nanoparticles on magnetic silica: aqueous hydration of nitriles to amides. Chem Commun 48:6220–6222

    Article  CAS  Google Scholar 

  • Nasir Baig RB, Varma RS (2013) Magnetically retrievable catalysts for organic synthesis. Chem Commun 49:752–770

    Article  Google Scholar 

  • Osaka T, Takai M, Hayashi K, Ohashi K, Saito M, Yamada K (1998) A soft magnetic CoNiFe film with high saturation magnetic flux density and low coercivity. Nature 392:796–798

    Article  CAS  Google Scholar 

  • Paknikar KM, Nagpal V, Pethkar AV, Rajwade JM (2005) Degradation of lindane from aqueous solutions using iron sulfide nanoparticles stabilized by biopolymers. Sci Technol Adv Mater 6:370–374

    Article  CAS  Google Scholar 

  • Phenrat T, Saleh N, Sirk K, Kim H-J, Tilton RD, Lowry GV (2007) Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J Nanopart Res 10:795–814

    Article  CAS  Google Scholar 

  • Pierard N, Fonseca A, Konya Z, Willems I, Tendeloo GV, Nagy JB (2001) Production of short carbon nanotubes with open tips by ball milling. Chem Phys Lett 335:1–8

    Article  CAS  Google Scholar 

  • Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34:2564–2569

    Article  CAS  Google Scholar 

  • Ponder SM, Darab JG, Bucher J, Caulder D, Craig I, Davis L, Edelstein N, Lukens W, Nitsche H, Rao L, Shuh DK, Mallouk TE (2001) Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants. Chem Mater 13:479–486

    Article  CAS  Google Scholar 

  • Puzyn T, Rasulev B, Gajewicz A, Hu X, Dasari TP, Michalkova A, Hwang HM, Toropov A, Leszczynska D, Leszczynski J (2011) Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat Nanotechnol 6:175–178

    Article  CAS  Google Scholar 

  • Rajajayavel SR, Ghoshal S (2015) Enhanced reductive dechlorination of trichloroethylene by sulfidated nanoscale zerovalent iron. Water Res 78:144–153

    Article  CAS  Google Scholar 

  • Rebek J Jr (2009) Molecular recognition and self-assembly special feature: introduction to the molecular recognition and self-assembly special feature. Proc Natl Acad Sci U S A 106:10423–10424

    Article  CAS  Google Scholar 

  • Rosenzweig S, Sorial GA, Sahle-Demessie E, McAvoy DC (2014) Optimizing the physical-chemical properties of carbon nanotubes (CNT) and graphene nanoplatelets (GNP) on Cu(II) adsorption. J Hazard Mater 279:410–417

    Article  CAS  Google Scholar 

  • Saleh N, Sirk K, Liu Y, Phenrat T, Dufour B, Matyjaszewski K, Tilton RD, Lowry GV (2007) Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media. Environ Eng Sci 24:45–57

    Article  CAS  Google Scholar 

  • Sanderson P, Delgado-Saborit JM, Harrison RM (2014) A review of chemical and physical characterisation of atmospheric metallic nanoparticles. Atmo Environ 94:353–365

    Article  CAS  Google Scholar 

  • Sarkar S, Guibal E, Quignard F, SenGupta AK (2012) Polymer-supported metals and metal oxide nanoparticles: synthesis, characterization, and applications. J Nanopar Res 14:1–24

    Article  CAS  Google Scholar 

  • Scherer MM, Balko BA, Gallagher DA, Tratnyek PG (1998) Correlation analysis of rate constants for dechlorination by zero-valent iron. Environ Sci Technol 32:3026–3033

    Article  CAS  Google Scholar 

  • Schmidtke C, Eggers R, Zierold R, Feld A, Kloust H, Wolter C, Ostermann J, Merkl JP, Schotten T, Nielsch K, Weller H (2014) Polymer-assisted self-assembly of superparamagnetic iron oxide nanoparticles into well-defined clusters: controlling the collective magnetic properties. Langmuir 30:11190–11196

    Article  CAS  Google Scholar 

  • Shahri FB, Niazi A (2015) Synthesis of modified maghemite nanoparticles and its application for removal of acridine orange from aqueous solutions by using Box-Behnken design. J Mag Mag Mater 396:318–326

    Article  CAS  Google Scholar 

  • Shao L, Jiang XF, Yu XC, Li BB, Clements WR, Vollmer F, Wang W, Xiao YF, Gong Q (2013) Detection of single nanoparticles and lentiviruses using microcavity resonance broadening. Adv Mater 25:5616–5620

    Article  CAS  Google Scholar 

  • Shi X, Sun K, Balogh LP, Baker JR (2006) Synthesis, characterization, and manipulation of dendrimer-stabilized iron sulfide nanoparticles. Nanotechnology 17:4554–4560

    Article  CAS  Google Scholar 

  • Shojaeimehr T, Rahimpour F, Khadivi MA, Sadeghi M (2014) A modeling study by response surface methodology (RSM) and artificial neural network (ANN) on Cu2+ adsorption optimization using light expended clay aggregate (LECA). J Ind and Eng Chem 20:870–880

    Article  CAS  Google Scholar 

  • Sile-Yuksel M, Tas B, Koseoglu-Imer DY, Koyuncu I (2014) Effect of silver nanoparticle (AgNP) location in nanocomposite membrane matrix fabricated with different polymer type on antibacterial mechanism. Desalination 347:120–130

    Article  CAS  Google Scholar 

  • Singh A, Jain D, Upadhyay MK, Khandelwal N, Verma HN (2010) Green synthesis of silver nanoparticles using Argemone mexicana leaf extract and evaluation of their antimicrobial activities. Dig J Nanomater Bios 5:483–489

    Google Scholar 

  • Singh R, Misra V, Singh RP (2011) Synthesis, characterization and role of zero-valent iron nanoparticle in removal of hexavalent chromium from chromium-spiked soil. J Nanopart Res 13:4063–4073

    Article  CAS  Google Scholar 

  • Singh R, Misra V, Singh RP (2012) Removal of hexavalent chromium from contaminated ground water using zero-valent iron nanoparticles. Environ Monit Assess 184:3643–3651

    Article  CAS  Google Scholar 

  • Sitek JS, Sedlackova K, Júliu D (2013) Some applications of Mössbauer spectroscopy. J Phy Sci Appl 3:295–300

    Google Scholar 

  • Smuleac V, Varma R, Sikdar S, Bhattacharyya D (2011) Green synthesis of Fe and Fe/Pd bimetallic nanoparticles in membranes for reductive degradation of chlorinated organics. J Memb Sci 379:131–137

    Article  CAS  Google Scholar 

  • Sohn K, Kang SW, Ahn S, Woo M, Yang S-K (2006) Fe (0) nanoparticles for nitrate reduction: stability, reactivity, and transformation. Environ Sci Technol 40:5514–5519

    Article  CAS  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182

    Article  CAS  Google Scholar 

  • Su C, Puls RW (2003) In situ remediation of arsenic in simulated groundwater using zerovalent iron: laboratory column tests on combined effects of phosphate and silicate. Environ Sci Technol 37:2582–2587

    Article  CAS  Google Scholar 

  • Sun YP, Li XQ, Zhang WX, Wang HP (2007) A method for the preparation of stable dispersion of zero-valent iron nanoparticles. Colloids Surf A: Physicochem Eng Aspects 308:60–66

    Article  CAS  Google Scholar 

  • Sun Y, Guan X, Wang J, Meng X, Xu C, Zhou G (2014) Effect of weak magnetic field on arsenate and arsenite removal from water by zerovalent iron: an XAFS investigation. Environ Sci Technol 48:6850–6858

    Article  CAS  Google Scholar 

  • Sun X, Jia M, Guan L, Ji J, Zhang Y, Tang L, Li Z (2015) Multilayer graphene–gold nanocomposite modified stem-loop DNA biosensor for peanut allergen-Ara h1 detection. Food Chem 172:335–342

    Article  CAS  Google Scholar 

  • Tanboonchuy V, Hsu JC, Grisdanurak N, Liao CH (2011) Gas-bubbled nano zero-valent iron process for high concentration arsenate removal. J Hazard Mater 186:2123–2128

    Article  CAS  Google Scholar 

  • Tanboonchuy V, Grisdanurak N, Liao CH (2012) Background species effect on aqueous arsenic removal by nano zero-valent iron using fractional factorial design. J Hazard Mater 205–206:40–46

    Article  CAS  Google Scholar 

  • Teng H, Xu S, Zhao C, Lv F, Liu H (2013) Removal of hexavalent chromium from aqueous solutions by sodium dodecyl sulfate stabilized nano zero-valent iron: a kinetics, equilibrium, thermodynamics study. Sep Sci Technol 48:1729–1737

    Article  CAS  Google Scholar 

  • Tseng KH, Liao CY, Huang JC, Tien DC, Tsung TT (2008) Characterization of gold nanoparticles in organic or inorganic medium (ethanol/water) fabricated by spark discharge method. Mater Lett 62:3341–3344

    Article  CAS  Google Scholar 

  • Üzüm Ç, Shahwan T, Eroğlu AE, Hallam KR, Scott TB, Lieberwirth I (2009) Synthesis and characterization of kaolinite-supported zero-valent iron nanoparticles and their application for the removal of aqueous Cu2+ and Co2+ ions. Appl Clay Sci 43:172–181

    Article  CAS  Google Scholar 

  • Valiev R (2002) Materials science: nanomaterial advantage. Nature 419:887–889

    Article  CAS  Google Scholar 

  • Verma S, Nandi M, Modak A, Jain SL, Bhaumik A (2011) Novel organic-inorganic hybrid mesoporous silica supported oxo-vanadium Schiff base for selective oxidation of alcohols. Adv Synth Catal 353:1897–1902

    Article  CAS  Google Scholar 

  • Verma D, Verma S, Sinha AK, Jain SL (2013a) Iron nanoparticles supported on graphene oxide: a robust, magnetically separable heterogeneous catalyst for the oxidative cyanation of tertiary amines. ChemPlusChem 78:860–865

    Article  CAS  Google Scholar 

  • Verma S, Tripathi D, Gupta P, Singh R, Bahuguna GM, Shivakumar KLN, Ghauhan RK, Sarah S, Jain SL (2013b) Highly dispersed palladium nanoparticles grafted onto nanocrystalline starch for the oxidation of alcohols using molecular oxygen as an oxidant. Dalton Trans 42:11522–11527

    Article  CAS  Google Scholar 

  • Verma S, Verma D, Jain S (2014) Magnetically separable palladium-graphene nanocomposite as heterogeneous catalyst for synthesis of 2-alkylquinolines via one pot reaction of anilines with alkenyl ethers. Tetrahedron Lett 55:2406–2509

    Article  CAS  Google Scholar 

  • Verma S, Kumar S, Shawat E, Nessim GD, Jain SL (2015a) Carbon nanofibers decorated with oxo-rhenium complexes: highly efficient heterogeneous catalyst for oxidation of amines with hydrogen peroxide. J Mol Catal A: Cheml 402:46–52

    Article  CAS  Google Scholar 

  • Verma S, Nasir Baig RB, Han C, Nadagouda MN, Varma RS (2015b) Magnetic graphitic carbon nitride: its application in the C–H activation of amines. Chem Commun 51:15554–15557

    Article  CAS  Google Scholar 

  • Virkutyte J, Varma RS (2011) Green synthesis of metal nanoparticles: biodegradable polymers and enzymes in stabilization and surface functionalization. Chem Sci 2:837–846

    Article  CAS  Google Scholar 

  • Wang ZH, Choi CJ, Kim JC, Kim BK, Zhang ZD (2003) Characterization of Fe–Co alloyed nanoparticles synthesized by chemical vapor condensation. Mater Lett 57:3560–3564

    Article  CAS  Google Scholar 

  • Wang Z, Huang W, Fennell DE, Peng P (2008) Kinetics of reductive dechlorination of 1,2,3,4-TCDD in the presence of zero-valent zinc. Chemosphere 71:360–368

    Article  CAS  Google Scholar 

  • Wang G, Wang Y, Chen L, Choo J (2010) Nanomaterial-assisted aptamers for optical sensing. Biosens Bioelectron 25:1859–1868

    Article  CAS  Google Scholar 

  • Wang C, Luo H, Zhang Z, Wu Y, Zhang J, Chen S (2014a) Removal of As(III) and As(V) from aqueous solutions using nanoscale zero valent iron-reduced graphite oxide modified composites. J Hazard Mater 268:124–131

    Article  CAS  Google Scholar 

  • Wang W, Gu J, Hua W, Jia X, Xi K (2014b) A novel high efficiency composite catalyst: single crystal triangular Au nanoplates supported by functional reduced graphene oxide. Chem Commun 50:8889–8891

    Article  CAS  Google Scholar 

  • Wang Y, Qu K, Tang L, Li Z, Moore E, Zeng X, Liu Y, Li J (2014c) Nanomaterials in carbohydrate biosensors. TrAC Trends Anal Chem 58:54–70

    Article  CAS  Google Scholar 

  • Wang Y, Tang L, Li Z, Lin Y, Li J (2014d) In situ simultaneous monitoring of ATP and GTP using a graphene oxide nanosheet-based sensing platform in living cells. Nat Protoc 9:1944–1955

    Article  CAS  Google Scholar 

  • Wei J, Li Y, Wang M, Yue Q, Sun Z, Wang C, Zhao Y, Deng Y, Zhao D (2013) A systematic investigation of the formation of ordered mesoporous silicas using poly(ethylene oxide)-b-poly(methyl methacrylate) as the template. J Mater Chem A 1:8819–8827

    Article  CAS  Google Scholar 

  • Willhammar T, Mayoral A, Zou X (2014) 3D reconstruction of atomic structures from high angle annular dark field (HAADF) STEM images and its application on zeolite silicalite-1. Dalton Trans 43:14158–14163

    Article  CAS  Google Scholar 

  • Wu SJ, Liou TH, Mi FL (2009) Synthesis of zero-valent copper-chitosan nanocomposites and their application for treatment of hexavalent chromium. Bioresour Technol 100:4348–4353

    Article  CAS  Google Scholar 

  • Wu Y, Luo H, Wang H (2014a) Removal of para-nitrochlorobenzene from aqueous solution on surfactant-modified nanoscale zero-valent iron/graphene nanocomposites. Environ Technol 35:2698–2707

    Article  CAS  Google Scholar 

  • Wu Y, Yang M, Hu S, Wang L, Yao H (2014b) Characteristics and mechanisms of 4A zeolite supported nanoparticulate zero-valent iron as Fenton-like catalyst to degrade methylene blue. Toxicol Environ Chem 96:227–242

    Article  CAS  Google Scholar 

  • Xiang Q, Lang D, Shen T, Liu F (2015) Graphene-modified nanosized Ag3PO4 photocatalysts for enhanced visible-light photocatalytic activity and stability. Appl Catal B Environ 162:196–203

    Article  CAS  Google Scholar 

  • Xie B, Zuo J, Gan L, Liu F, Wang K (2013) Cation exchange resin supported nanoscale zero-valent iron for removal of phosphorus in rainwater runoff. Front Environ Sci Eng 8:463–470

    Article  CAS  Google Scholar 

  • Xie Y, Fang Z, Qiu X, Tsang EP, Liang B (2014) Comparisons of the reactivity, reusability and stability of four different zero-valent iron-based nanoparticles. Chemosphere 108:433–436

    Article  CAS  Google Scholar 

  • Xiong Z, He F, Zhao D, Barnett MO (2009) Immobilization of mercury in sediment using stabilized iron sulfide nanoparticles. Water Res 43:5171–5179

    Article  CAS  Google Scholar 

  • Xiong X, Sun B, Zhang J, Gao N, Shen J, Li J, Guan X (2014) Activating persulfate by Fe(0) coupling with weak magnetic field: performance and mechanism. Water Res 62:53–62

    Article  CAS  Google Scholar 

  • Xiong X, Sun Y, Sun B, Song W, Sun J, Gao N, Qiao J, Guan X (2015) Enhancement of the advanced Fenton process by weak magnetic field for the degradation of 4-nitrophenol. RSC Adv 5:13357–13365

    Article  CAS  Google Scholar 

  • Xu J, Lv X, Li J, Li Y, Shen L, Zhou H, Xu X (2012) Simultaneous adsorption and dechlorination of 2,4-dichlorophenol by Pd/Fe nanoparticles with multi-walled carbon nanotube support. J Hazard Mater 225–226:36–45

    Article  CAS  Google Scholar 

  • Xu J, Sheng T, Hu Y, Baig SA, Lv X, Xu X (2013) Adsorption–dechlorination of 2,4-dichlorophenol using two specified MWCNTs-stabilized Pd/Fe nanocomposites. Chem Eng J 219:162–173

    Article  CAS  Google Scholar 

  • Xu C, Wang X, Lin S, Zhu L, Chen Y (2014) Enhanced removal efficiency of bromate from aqueous solutions by nanoscale zero-valent iron immobilized on activated carbon. Desalin Water Treat 54:2480–2489

    Article  CAS  Google Scholar 

  • Yan W, Herizing AA, Li XQ, Kiely CJ, Zhang WX (2010) Structural evolution of Pd-doped nanoscale zero-valent iron (nZVI) in aqueous media and implications for particle aging and reactivity. Environ Sci Technol 44:4288–4294

    Article  CAS  Google Scholar 

  • Yan EC, Fu L, Wang Z, Liu W (2014) Biological macromolecules at interfaces probed by chiral vibrational sum frequency generation spectroscopy. Chem Rev 114:8471–8498

    Article  CAS  Google Scholar 

  • Yang P, Zhang Y (2015) Self-assembly of Ag nanoparticles induced by centrifuging and broken by silanization. J Nanosci Nanotechnol 15:6007–6014

    Article  CAS  Google Scholar 

  • Yang J, Zhang Z, Zhang D, Li Y (2013) Quantitative analysis of the (n, m) abundance of single-walled carbon nanotubes dispersed in ionic liquids by optical absorption spectra. Mater Chem Phys 139:233–240

    Article  CAS  Google Scholar 

  • Yang C, Jung S, Yi H (2014) A biofabrication approach for controlled synthesis of silver nanoparticles with high catalytic and antibacterial activities. Biochem Eng J 89:10–20

    Article  CAS  Google Scholar 

  • Yavuz CT, Mayo JT, Suchecki C, Wang J, Ellsworth AZ, D’Couto H, Quevedo E, Prakash A, Gonzalez L, Nguyen C, Kelty C, Colvin VL (2010) Pollution magnet: nano-magnetite for arsenic removal from drinking water. Environ Geochem Health 32:327–334

    Article  CAS  Google Scholar 

  • You Y, Han J, Chiu PC, Jin Y (2005) Removal and inactivation of waterborne viruses using zerovalent iron. Environ Sci Technol 39:9263–9269

    Article  CAS  Google Scholar 

  • Yousefzadi M, Rahimi Z, Ghafori V (2014) The green synthesis, characterization and antimicrobial activities of silver nanoparticles synthesized from green alga Enteromorpha flexuosa (Wulfen). J Agardh Mater Lett 137:1–4

    Article  CAS  Google Scholar 

  • Yu D, Goh K, Wang H, Wei L, Jiang W, Zhang Q, Dai L, Chen Y (2014a) Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage. Nat Nanotechnol 9:555–562

    Article  CAS  Google Scholar 

  • Yu RF, Chi FH, Cheng WP, Chang JC (2014b) Application of pH, ORP, and DO monitoring to evaluate chromium(VI) removal from wastewater by the nanoscale zero-valent iron (nZVI) process. Chem Eng J 255:568–576

    Article  CAS  Google Scholar 

  • Zhang D, Yang J, Li Y (2013a) Spectroscopic characterization of the chiral structure of individual single-walled carbon nanotubes and the edge structure of isolated graphene nanoribbons. Small 9:1284–1304

    Article  CAS  Google Scholar 

  • Zhang W, Saliba M, Stranks SD, Sun Y, Shi X, Wiesner U, Snaith HJ (2013b) Enhancement of perovskite-based solar cells employing core-shell metal nanoparticles. Nano Lett 13:4505–4510

    Article  CAS  Google Scholar 

  • Zhang X, Fang Y, Chen W (2013c) Preparation of silver/bacterial cellulose composite membrane and study on its antimicrobial activity. Synthesis Reactiv Inorgan, Metal-Organ, Nano-Metal Chem 43:907–913

    Article  CAS  Google Scholar 

  • Zhang XY, Liu Y, Li J, Yang XJ (2013d) Synthesis and magnetic studies of Fe–Ni nanofibres by electrospinning. Mater Res Innovat 17:436–439

    Article  CAS  Google Scholar 

  • Zhao J, Zou Y, Zou X, Bai T, Liu Y, Gao R, Wang D, Li GD (2014a) Self-template construction of hollow Co3O4 microspheres from porous ultrathin nanosheets and efficient noble metal-free water oxidation catalysts. Nanoscale 6:7255–7262

    Article  CAS  Google Scholar 

  • Zhao S, Shen Z, Wang J, Li X, Zeng Y, Wang B, He Y, Du Y (2014b) Glycerol-mediated nanostructure modification leading to improved transparency of porous polymeric scaffolds for high performance 3D cell imaging. Biomacromolecules 15:2521–2531

    Article  CAS  Google Scholar 

  • Zhou J, Ren F, Wu W, Zhang S, Xiao X, Xu J, Jiang C (2012) Controllable synthesis and catalysis application of hierarchical PS/Au core-shell nanocomposites. J Colloid Interface Sci 387:47–55

    Article  CAS  Google Scholar 

  • Zhou Y, Wang D, Li Y (2014) Pd and Au@Pd nanodendrites: a one-pot synthesis and their superior catalytic properties. Chem Commun 50:6141–6144

    Article  CAS  Google Scholar 

  • Zhu Y, Yang L, Meng C, Yuan Q, Yan C, Dong C, Sui X, Yao L, Yang F, Lu Y, Wang W (2015) Indoor/outdoor relationships and diurnal/nocturnal variations in water-soluble ion and PAH concentrations in the atmospheric PM2.5 of a business office area in Jinan, a heavily polluted city in China. Atmos Res 153:276–285

    Article  CAS  Google Scholar 

  • Zhuang Y, Ahn S, Luthy RG (2010) Debromination of polybrominated diphenyl ethers by nanoscale zerovalent iron: pathways, kinetics, and reactivity. Environ Sci Technol 44:8236–8242

    Article  CAS  Google Scholar 

  • Zhuang Y, Ahn S, Seyfferth AL, Masue-Slowey Y, Fendorf S, Luthy RG (2011) Dehalogenation of polybrominated diphenyl ethers and polychlorinated biphenyl by bimetallic, impregnated, and nanoscale zerovalent iron. Environ Sci Technol 45:4896–4903

    Article  CAS  Google Scholar 

  • Zhuang Y, Jin L, Luthy RG (2012) Kinetics and pathways for the debromination of polybrominated diphenyl ethers by bimetallic and nanoscale zerovalent iron: effects of particle properties and catalyst. Chemosphere 89:426–432

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under grant no. 21367009 and the government of Guizhou Province under project no. LKS [2013] 09.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiwei Hu.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Hu, J., Shi, X. et al. Nanoscale zero-valent metals: a review of synthesis, characterization, and applications to environmental remediation. Environ Sci Pollut Res 23, 17880–17900 (2016). https://doi.org/10.1007/s11356-016-6626-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6626-0

Keywords

Navigation