Skip to main content

Advertisement

Log in

Removal of As(III) and As(V) from water by chitosan and chitosan derivatives: a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

As arsenic removal becomes a global concern, the development of removal processes for arsenic treatment is still a major challenge. With regard to environmental compatibility and cheapness, chitosan and chitosan derivatives are considered as a promising removal technology for arsenic. Chitosan and chitosan derivatives possess the properties of low cost and good sorption on the arsenic removal. The present review is concerned about the present understanding of the mechanisms involved in sorption processes. Further on, detailed discussions are given of the effects of various factors on the performance of chitosan and chitosan derivatives in arsenic treatment processes. Finally, special attention is paid to the future challenges of chitosan and chitosan derivatives utilized for industrial arsenic treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Abou El-Reash YG, Otto M, Kenawy IM, Ouf AM (2011) Adsorption of Cr(VI) and As(V) ions by modified magnetic chitosan chelating resin. Int J Biol Macromol 49:513–522

    Article  CAS  Google Scholar 

  • Alakhras FA, Abu DK, Mubarak MS (2005) Synthesis and chelating properties of some poly (amidoxime-hydroxamic acid) resins toward some trivalent lanthanide metal ions. J. Appl. Polym. Sci. 97 (2005) 691–696

  • An JH, Dultz S (2008) Adsorption of Cr(VI) and As(V) on chitosan-montmorillonite: selectivity and pH dependence. Clay Clay Miner 56(5):549–557

    Article  CAS  Google Scholar 

  • Annadurai G, Ling LY, Lee JF (2008) Adsorption of reactive dye from an aqueous solution by chitosan: isotherm, kinetic and thermodynamic analysis. J Hazard Mater 152:337–346

    Article  CAS  Google Scholar 

  • Bailey SE, Olin TJ, Bricka RM, Adrian DD (1999) A review of potentially low-cost sorbents for heavy metals. Water Res 33:2469–2479

    Article  CAS  Google Scholar 

  • Baskan MB, Pala A (2009) Determination of arsenic removal efficiency by ferric ions using response surface methodology. J Hazard Mater 166:796–801

    Article  CAS  Google Scholar 

  • Bishop C, Kipling MD (1978) Arsenic and cancer. J Soc Occup Med 28:3

    Article  CAS  Google Scholar 

  • Bissen M, Vieillard-Baron M, Schindelin AJ (2001) TiO2-catalyzed photooxidation of arsenite to arsenate in aqueous samples. Chemosphere 44:751–757

    Article  CAS  Google Scholar 

  • Boddu VM, Abburi K, Talbott JL, Smith ED, Haasch R (2008) Removal of arsenic (III) and arsenic (V) from aqueous medium using chitosan-coated biosorbent. Water Res 42:633–642

    Article  CAS  Google Scholar 

  • Bosinco S, Guibal E, Roussy J, Cloirec PL (1998) Adsorption of hexavalent chromium on chitosan beads: sorption isotherms and kinetics. Miner Process Extr Metall Rev 19:277–291

    Article  CAS  Google Scholar 

  • Boyacı E, Eroglu AE, Shahwan T (2010) Sorption of As(V) from waters using chitosan and chitosan-immobilized sodium silicate prior to atomic spectrometric determination. Talanta 80:1452–1460

    Article  Google Scholar 

  • Chassary P, Vincent T, Guibal E (2004) Metal anion sorption on chitosan and derivative materials: a strategy for polymer modification and optimum use. React Funct Polym 60:137–149

    Article  CAS  Google Scholar 

  • Chatterjee S, Chatterjee S, Chatterjee BP, Das AR, Guha AK (2005) Adsorption of a model anionic dye, eosin Y, from aqueous solution by chitosan hydrobeads. Colloid Interf Sci 288:30–35

    Article  CAS  Google Scholar 

  • Chen C-Y, Chang T-H, Kuo J-T, Chen Y-F, Chung Y-C (2008) Characteristics of molybdate-impregnated chitosan beads (MICB) in terms of arsenic removal from water and the application of a MICB-packed column to remove arsenic from wastewater. Bioresour Technol 99:7487–7494

    Article  CAS  Google Scholar 

  • Chiou MS, Li HY (2003) Adsorption behavior of reactive dye in aqueous solution on chemical cross-linked chitosan beads. Chemosphere 50:1095–1105

    Article  CAS  Google Scholar 

  • Cho DW, Jeon BH, Chon CM, Kim Y, Schwartz FW, Lee ES, Song H (2012) A novel chitosan/clay/magnetite composite for adsorption of Cu(II) and As(V). Chem Eng J 200–202:654–662

    Article  Google Scholar 

  • Crini G, Badot PM (2008) Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Polym Sci 33:399–447

    CAS  Google Scholar 

  • Dambies L, Guibal E, Roze A (2000) Arsenic(V) sorption on molybdate-impregnated chitosan beads. Colloids Surf A Physicochem Eng Asp 170:19–31

    Article  CAS  Google Scholar 

  • Dambies L, Vincent T, Guibal E (2002) Treatment of arsenic-containing solutions using chitosan derivatives: uptake mechanism and sorption performances. Water Res 36:3699–3710

    Article  CAS  Google Scholar 

  • Dhanapala MV, Subramanianb K (2015) Modified chitosan for the collection of reactive blue 4, arsenic and mercury from aqueous media. Carbohydr Polym 117:123–132

    Article  Google Scholar 

  • Dhoble RM, Lunge S, Bhole AG, Rayalu S (2011) Magnetic binary oxide particles (MBOP): a promising adsorbent for removal of As (III) in water. Water Res 45:4769–4781

    Article  CAS  Google Scholar 

  • dos Santos ZM, Caroni ALPF, Pereira MR, da Silva DR, Fonseca JLC (2009) Determination of deacetylation degree of chitosan: a comparison between conductometric titration and CHN elemental analysis. Carbohydr Res 344:2591–2595

    Article  Google Scholar 

  • Elwakeel KZ (2010) Environmental application of chitosan resins for the treatment of water and wastewater: a review. J Dispers Sci Technol 31:273–288

    Article  CAS  Google Scholar 

  • Elwakeel KZ (2014) Removal of arsenate from aqueous media by magnetic chitosan resin immobilized with molybdate oxoanions. Int J Environ Sci Technol 11:1051–1062. doi:10.1007/s13762-013-0307-z

    Article  CAS  Google Scholar 

  • Elwakeel KZ, Guibal E (2015) Arsenic(V) sorption using chitosan/Cu(OH)2 and chitosan/CuO composite sorbents. Carbohydr Polym 134:190–204

    Article  CAS  Google Scholar 

  • Fagundes T, Bachmann AWL, Overrath Tomaz HSO, Rodrigues CA (2008) Adsorcao de arsenic(V) pela quitosana ferro- III reticulada. Quim Nov. 31(6):1305–1309

  • Faria PCC, Órfão JJM, Pereira MFR (2004) Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries. Water Res 38:2043–2052

    Article  CAS  Google Scholar 

  • Fierro V, Muniz G, Gonzalez-Sanchez G, Ballinas ML, Celzard A (2009) Arsenic removal by iron-doped activated carbons prepared by ferric chloride forced hydrolysis. J Hazard Mater 168:430–437

    Article  CAS  Google Scholar 

  • Gang DD, Deng BL, Lin LS (2010) As(III) removal using an iron-impregnated chitosan sorbent. J Hazard Mater 182:156–161

    Article  CAS  Google Scholar 

  • Gerentea C, Andres Y, McKay G, Cloirecc PL (2010) Removal of arsenic(V) onto chitosan: from sorption mechanism explanation to dynamic water treatment process. Chem Eng J 158:593–598

    Article  Google Scholar 

  • Gupta A, Chauhan VS, Sankararamakrishnan N (2009) Preparation and evaluation of iron–chitosan composites for removal of As(III) and As(V) from arsenic contaminated real life groundwater. Water Res 43:3862–3870

    Article  CAS  Google Scholar 

  • Gupta A, Yunus M, Sankararamakrishnan N (2012) Zerovalent iron encapsulated chitosan nanospheres—a novel adsorbent for the removal of total inorganic arsenic from aqueous systems. Chemosphere 86:150–155

    Article  CAS  Google Scholar 

  • Gupta A, Yunus M, Sankararamakrishnan N (2013) Chitosan- and iron–chitosan-coated sand filters: a cost-effective approach for enhanced arsenic removal. Eng Chem Res 52:2066–2072

    Article  CAS  Google Scholar 

  • Hanh TT, Huy HT, Nguyen Hie NQ (2015) Pre-irradiation grafting of acrylonitrile onto chitin for adsorption of arsenic in water. Radiat Phys Chem 106:235–241

    Article  CAS  Google Scholar 

  • Hasan S, Ghosh TK, Viswanath DS, Boddu VM (2008) Dispersion of chitosan on perlite for enhancement of copper (II) adsorption capacity. J Hazard Mater 152:826–837

    Article  CAS  Google Scholar 

  • Hiral A, Odani H, Nakajima A (1991) Determination of degree of deacetylation of chitosan by 1H NMR spectroscopy. Polym Bull 26:87–94

    Article  Google Scholar 

  • Jana S, Saikia A, Purkait MK, Mohanty K (2011) Chitosan based ceramic ultrafiltration membrane: preparation, characterization and application to remove Hg(II) and As(III) using polymer enhanced ultrafiltration. Chem Eng J 170:209–219

    Article  CAS  Google Scholar 

  • Jiang X, Chen L-R, Zhong W (2003) A new linear potentiometric titration method for the determination of deacetylation degree of chitosan. Carbohydr Polym 54:457–463

    Article  CAS  Google Scholar 

  • Juang R-S, Ju C-Y (1997) Equilibrium sorption of copper(II) − ethylenediaminetetraacetic acid chelates onto cross-linked, polyaminated chitosan beads. Ind Eng Chem Res 36:5403–5409

    Article  CAS  Google Scholar 

  • Juang R-S, Shao H-J (2002) A simplified equilibrium model for sorption of heavy metal ions from aqueous solutions on chitosan. Water Res 36:2999–3008

    Article  CAS  Google Scholar 

  • Kartal SN, Imamura Y (2005) Removal of copper, chromium, and arsenic from CCA-treated wood onto chitin and chitosan. Bioresour Technol 96:389–392

    Article  CAS  Google Scholar 

  • Kurita K (2006) Chitin and chitosan: functional biopolymers from marine crustaceans. Mar Biotechnol 8:203–226

    Article  CAS  Google Scholar 

  • Kwok KCM, Lee VKC, Gerente C, McKay G (2009) Novel model development for sorption of arsenate on chitosan. Chem Eng J 151:122–133

    Article  CAS  Google Scholar 

  • Kwok KCM, Koong LF, Chen G-H, McKay G (2014) Mechanism of arsenic removal using chitosan and nanochitosan. J Colloid Interface Sci 416:1–10

    Article  CAS  Google Scholar 

  • Lavertu M, Xia Z, Serreqi AN, Berrada M, Rodrigues A, Wang D, Buschmann MD, Gupta A (2003) A validated 1H NMR method for the determination of the degree of deacetylation of chitosan. J Pharm Biomed Anal 32:1149–1158

    Article  CAS  Google Scholar 

  • Lee H, Choi W (2002) Photocatalytic oxidation of arsenite in TiO2 suspension: kinetics and mechanisms. Environ Sci Technol 36:3872–3878

    Article  CAS  Google Scholar 

  • Lerda D (1994) Sister-chromatid exchange (SCE) among individualschronically exposed to arsenic in drinking water. Mutat Res 312:111

    Article  CAS  Google Scholar 

  • Lin C-F, Wu C-H, Lai H-T (2008) Dissolved organic matter and arsenic removal with coupled chitosan/UF operation. Sep Purif Technol 60:292–298

    Article  CAS  Google Scholar 

  • Liu B-J, Wang D-F, Gao X, Zhang L, Xu Y, Li Y-J (2011a) Removal of arsenic from Laminaria japonica aresch juice using As(III)-imprinted chitosan resin. Eur Food Res Technol 232:911–917. doi:10.1007/s00217-011-1460-6

    Article  CAS  Google Scholar 

  • Liu B-J, Wang D-F, Li H-Y, Xu Y, Li Y-J (2011b) As(III) removal from aqueous solution using α-Fe2O3 impregnated chitosan beadswith As(III) as imprinted ions. Desalination 272:286–292

    Article  CAS  Google Scholar 

  • Liu B-J, Lu X, Wang D-F, Xu Y, Zhang L, Li Y-J (2012) Adsorption behavior of As(III) onto chitosan resin with As(III) as template ions. J Appl Polym Sci 125(1):246–253

    Article  CAS  Google Scholar 

  • Malik AH, Khan ZM, Mahmood Q, Nasreen S, Bhatti ZA (2009) Perspectives of low cost arsenic remediation of drinking water in Pakistan and other countries. J Hazard Mater 168:1–12

    Article  CAS  Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235

    Article  CAS  Google Scholar 

  • Miller SM, Zimmerman JB (2010) Novel, bio-based, photoactive arsenic sorbent: TiO2-impregnated chitosan bead. Water Res 44(5722):5729

    Google Scholar 

  • Miller SM, Spaulding ML, Zimmerman JB (2011) Optimization of capacity and kinetics for a novel bio-based arsenic sorbent, TiO2-impregnated chitosan bead. Water Res 45:5745–5754

    Article  CAS  Google Scholar 

  • Mima S, Miya M, Iwamoto R, Yoshikawa S (1983) Highly deacetylated chitosan and its properties. J Appl Polym Sci 28:1909–1917

    Article  CAS  Google Scholar 

  • Miretzky P, Cirelli AF (2009) Hg(II) removal from water by chitosan and chitosan derivatives: a review. J Hazard Mater 167:10–23

    Article  CAS  Google Scholar 

  • Mohan D, Pittman CU Jr (2007) Arsenic removal from water/wastewater using adsorbents—a critical review. J Hazard Mater 142:1–53

    Article  CAS  Google Scholar 

  • Neto JDM, Bellato CR, Milagres JL, Pessoa KD, de Alvarenga ES, Bellato CR (2013) Preparation and evaluation of chitosan beads immobilized with Iron(III) for the removal of As(III) and As(V) from water. J Braz Chem Soc 24(1):121–132

    Article  Google Scholar 

  • Nielsen FH, Uthus EO (1981) Arsenic. In: Frieden F (ed) Biochemis-try of the essential ultratrace elements. Plenum, New York, p p319

    Google Scholar 

  • Reed BE, Vaughan R, Jiang L (2000) As(III), As(V) Hg and Pb removal by Fe-oxide impregnated activated carbon. J Environ Eng 126:869–873

    Article  CAS  Google Scholar 

  • Rhazi M, Desbrieres J, Tolaimate A, Rinaudo M, Vottero P, Alagui A (2002) Contribution to the study of the complexation of copper by chitosan and oligomers. Polymer 43:1267

    Article  CAS  Google Scholar 

  • Ryu J, Choi W (2013) Estimation of carbon dioxide emissions per urban center link unit using data collected by the advanced traffic information system in Daejeon, Korea. Atmos Environ 81:433–442

    Article  CAS  Google Scholar 

  • Sabarudin A, Oshita K, Oshima M, Motomizu S (2005) Synthesis of chitosan resin possessing 3,4-diamino benzoic acid moiety for the collection/concentration of arsenic and selenium in water samples and their measurement by inductively coupled plasma-mass spectrometry. Anal Chim Acta 542:207–215

    Article  CAS  Google Scholar 

  • Sacco LD, Masotti A (2010) Chitin and chitosan as multipurpose natural polymers for groundwater arsenic removal and As2O3 delivery in tumor therapy. Mar Drugs 8:1518–1525. doi:10.3390/md8051518

    Article  Google Scholar 

  • Saha S, Sarkar P (2012) Arsenic remediation from drinking water by synthesized nano-alumina dispersed in chitosan-grafted polyacrylamide. J Hazard Mater 227–228:68–78

    Article  Google Scholar 

  • Salih B (2002) Synthesis of 1, 4, 8, 11-tetraaza-cyclo-tetradecane monomer by addition of acryloyl chloride and its polymer for specific transition metal binding. J Appl Polym Sci 83:1406–1414

    Article  CAS  Google Scholar 

  • Santos HH, Demarchi CA, Rodrigues CA, Greneche JM, Nedelko N, Slawska-Waniewska A (2011) Adsorption of As(III) on chitosan-Fe-crosslinked complex (Ch-Fe). Chemosphere 82:278–283

    Article  Google Scholar 

  • Seyed Dorraji MS, Mirmohseni A, Tasselli F, Criscuoli A, Carraro M, Gross S, Figoli A (2014) Preparation, characterization and application of iron (III)-loaded chitosan hollow fiber membranes as a new bio-based As (V) sorbent. J Polym Res 21:399. doi:10.1007/s10965-014-0399-2

    Article  Google Scholar 

  • Sharma R, Singh N, Gupta A, Tiwari S, Tiwaric SK, Dhakate SR(2014) Electrospun chitosan–polyvinyl alcohol composite nanofibers loaded with cerium for efficient removal of arsenic from contaminated water. The Royal Society of Chemistry 2014, J. Mater. Chem. A, 2, 16669–16677

  • Shepherd R, Reader S, Falshaw A (1997) Chitosan functional properties. Glycoconj J 14:535–542

    Article  CAS  Google Scholar 

  • Shinde RN, Pandey AK, Acharya R, Guin R, Das SK, Rajurkar NS, Pujari PK (2013) Chitosan-transition metal ions complexes for selective arsenic(V) preconcentration. Water Res 47:3497–3506

    Article  CAS  Google Scholar 

  • Simeonidis K, Gkinis T, Tresintsi S, Martinez-Boubeta C, Vourlias G, Tsiaoussis I, Stavropoulos G, Mitrakas M, Angelakeris M (2011) Magnetic separation of hematite-coated Fe3O4 particles used as arsenic adsorbents. Chem Eng J 168:1008–1015

    Article  CAS  Google Scholar 

  • Sorlier P, Denuziere A, Viton C, Domard A (2001) Relation between the degree of acetylation and the electrostatic properties of chitin and chitosan. Biomacromolecules 2:765

    Article  CAS  Google Scholar 

  • Turan D, Kocahakimoğlu C, Boyaci E, Sait SC, Eroğlu AE (2014) Chitosan-immobilized pumice for the removal of As(V) from waters. Water Air Soil Pollut 225:1931. doi:10.1007/s11270-014-1931-z

    Article  Google Scholar 

  • Varma AJ, Deshpande SV, Kennedy JF (2004) Metal complexation by chitosan and its derivatives: a review. Carbohydr Polym 55:77–93

    Article  CAS  Google Scholar 

  • Vu DT, Li X, Wang C (2013) Adsorption of As(III) from aqueous solution based on porous magnetic/chitosan/ferric hydroxide microspheres prepared via electrospraying. Sci China Chem 56(5):678–684. doi:10.1007/s11426-012-4817-1

  • Wang C, Yuan F, Pan J-B, Jiao S-N, Jin L, Cai H-W (2014a) A novel method for the determination of the degree of deacetylation of chitosan by coulometric titration. Int J Biol Macromol 70:306–311

    Article  CAS  Google Scholar 

  • Wang J, Xu W-H, Chen L, Huang X-J, Liu J-H (2014b) Preparation and evaluation of magnetic nanoparticles impregnated chitosan beads for arsenic removal from water. Chem Eng J 251:25–34

    Article  CAS  Google Scholar 

  • WHO (2004) Guidelines for drinking water quality. 3rd ed., 1 Recommendations

  • Wu C-H, Chen Y-K, Tseng S-Y, Chen K-C, Chen S-F (2014) Determination of the degree of deacetylation of chitosan by capillary zone electrophoresis. Carbohydr Polym 111:236–244

    Article  CAS  Google Scholar 

  • Xu W-H, Wang J, Wang L, Sheng G-P, Liu J-H, Yu H-Q, Huang X-J (2013) Enhanced arsenic removal from water by hierarchically porous CeO2–ZrO2 nanospheres: role of surface- and structure-dependent properties. J Hazard Mater 260:498–507

    Article  CAS  Google Scholar 

  • Yang H, Lin W-Y, Rajeshwar K-J (1999) Homogeneous and heterogeneous photocatalytic reactions involving As(III) and As(V) species in aqueous media. Photochem Photobio A 123:137–143

    Article  CAS  Google Scholar 

  • Zajac A, Hanuza J, Wandas M, Dyminska L (2015) Determination of N-acetylation degree in chitosan using Raman spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 134:114–120

    Article  CAS  Google Scholar 

  • Zhang Y-Q, Xue C-H, Xue Y, Gao R-C, Zhang X-L (2005) Determination of the degree of deacetylation of chitin and chitosan by X-ray powder diffraction. Carbohydr Res 340:1914–1917

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is financially supported by the National Natural Science Foundation of China (No. 21376268), the Taishan Scholar Foundation (No. ts20130929), and the Fundamental Research Funds for the Central Universities (Nos. 15CX08005A and 15CX06050A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingtang Zheng.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Liu, Y. & Zheng, J. Removal of As(III) and As(V) from water by chitosan and chitosan derivatives: a review. Environ Sci Pollut Res 23, 13789–13801 (2016). https://doi.org/10.1007/s11356-016-6602-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6602-8

Keywords

Navigation