Skip to main content

Advertisement

Log in

Biodegradation of compostable and oxodegradable plastic films by backyard composting and bioaugmentation

  • 4th International Symposium on Environmental Biotechnology and Engineering-2014
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Plastics are widely used in the production of short-life products, which are discarded producing an accumulation of these materials and problems due to their persistence in the environment and waste management systems. Degradable plastics (compostable, oxodegradable) have been presented as an alternative to decrease the negative effect of plastic waste. In this research, the feasibility of degrading a commercially available compostable film and oxodegradable polyethylene, with and without previous abiotic oxidation, is assessed in a home composting system. Reactors (200 L) were used to degrade the plastic films along with a mixture of organic food waste (50 %), mulch (25 %), and dry leaves (25 %), amended with yeast and a solution of brown sugar to increase the speed of the process. The presence of the plastic film did not affect the composting process, which showed an initial increase in temperature and typical profiles for moisture content, pH, with a final C/N of 17.4. After 57 days, the compostable plastic has decreased its mechanical properties in more than 90 %, while the oxodegradable film did not show significant degradation if it was not previously degraded by UV radiation. The use of these plastics should be assessed against the prevailing waste management system in each city or country. In the case of Mexico, which lacks the infrastructure for industrial composting, home composting could be an option to degrade compostable plastics along organic waste. However, more testing is needed in order to set the optimal parameters of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agamuthu P, Faizura PN (2005) Biodegradability of degradable plastic waste. Waste Manag Res 23(2):95–100. doi:10.1177/0734242x05051045

    Article  CAS  Google Scholar 

  • Amlinger F, Peyr S, Cuhls C (2008) Green house gas emissions from composting and mechanical biological treatment. Waste Manag Res 26(1):47–60, Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18338701

    Article  CAS  Google Scholar 

  • ASTM D6400 (2012) Standard specification for labeling of plastics designed to be aerobically composted in municipal or industrial facilities. ASTM International, West Conshohocken

    Google Scholar 

  • ASTM D6400-12 (2004) Standard guide for exposing and testing plastics that degrade in the environment by a combination of oxidation and biodegradation. ASTM International, West Conshohocken, Pennsylvania, United States

  • ASTM D6954 (2004) Standard guide for exposing and testing plastics that degrade in the environment by a combination of oxidation and biodegradation. ASTM International, West Conshohocken, Pennsylvania,United States

  • ASTM D883 (2000) Standard terminology relating to plastics. ASTM International, West Conshohocken, Pennsylvania, United States

  • Boechat CL, Santos JAG, de A Accioly AM (2013) Net mineralization nitrogen and soil chemical changes with application of organic wastes with “Fermented Bokashi Compost”. Acta Scientiarum. Agronomy 35(2):257–264. doi:10.4025/actasciagron.v35i2.15133

    Google Scholar 

  • Camann A, Dragsbeak K, Krol S, Sandgren J, Song D (2010) Properties, recycling and alternatives to PE bags. Worcester Polytechnic Institute, Massachusetts, United States

  • Chaturvedi S, Kumar A, Singh B, Nain L, Joshi M, Satya S (2013) Bioaugmented composting of Jatropha de-oiled cake and vegetable waste under aerobic and partial anaerobic conditions. J Basic Microbiol 53(4):327–35. doi:10.1002/jobm.201100634

    Article  CAS  Google Scholar 

  • Corti A, Muniyasamy S, Vitali M, Imam SH, Chiellini E (2010) Oxidation and biodegradation of polyethylene films containing pro-oxidant additives: synergistic effects of sunlight exposure, thermal aging and fungal biodegradation. Polym Degrad Stab 95(6):1106–1114, Retrieved from http://www.sciencedirect.com/science/article/pii/S0141391010000893

    Article  CAS  Google Scholar 

  • DOF, D. O. de la federación (1984). NMX-AA-016-1984. Proteccion al Ambiente. Contaminación del Suelo. Residuos Solidos Municipales. Determinación de Humedad, Diario Oficial de la Federación .

  • DOF, D. O. de la federación (1992). NMX-AA-067-1985, determinación de la relación Carbono/Nitrógeno. 6 de Noviembre de 1992.

  • Erlandsson B, Karlsson S, Albertsson A-C (1997) The mode of action of corn starch and a pro-oxidant system in LDPE: influence of thermo-oxidation and UV-irradiation on the molecular weight changes. Polym Degrad Stab 55(2):237–245. doi:10.1016/S0141-3910(96)00139-5

    Article  CAS  Google Scholar 

  • Fan M-Y, Xie R-J, Qin G (2013) Bioremediation of petroleum-contaminated soil by a combined system of biostimulation-bioaugmentation with yeast. Environ Technol 35(1–4):391–9. doi:10.1080/09593330.2013.829504

    Google Scholar 

  • Faverial J, Sierra J (2014) Home composting of household biodegradable wastes under the tropical conditions of Guadeloupe (French Antilles). J Clean Prod 83:238–244. doi:10.1016/j.jclepro.2014.07.068

    Article  CAS  Google Scholar 

  • Fehr M (2015) Ten facts to guide municipal waste management thinking. Waste Manag Res 33(10):853–4. doi:10.1177/0734242X15589784

    Article  Google Scholar 

  • Feldman D (2002) Polymer weathering: photo-oxidation. J Polym Environ 10(4):163–173. doi:10.1023/A:1021148205366

  • GDF (2010). Decreto por el que se reforman los artículos 3, 6, 7, 8, 10, 11, 11 Bis, 14, 18, 23, 25, 26 Bis, 26 Bis 1, 33, 33 Bis, 33 Bis 1, 38, 45, 46, 55 y 69 de la Ley de Residuos Sólidos del Distrito Federal. Gaceta Oficial del Distrito Federal.

  • INEGI (2012) Anuario estadístico de los Estados Unidos Mexicanos 2011. Instituto Nacional de Estadística y Geografía, México

    Google Scholar 

  • Ishikagi T, Sugano W, Nakanishi A, Tateda M, Ike M, Fujita M, Ishigaki T (2004) The degradability of biodegradable plastics in aerobic and anaerobic waste landfill model reactors. Chemosphere 54(2004):225–233. doi:10.1016/S0045-6535(03)00750-1

    Google Scholar 

  • Ivanov V (2010) Environmental microbiology for engineers. CRC Press. Boca Raton, Florida, United States

  • Khanna S, Srivastava AK (2005) A simple structured mathematical model for biopolymer (P3HB) production. Biotechnol Prog 21:830–838

    Article  CAS  Google Scholar 

  • Koutny M, Lemaire J, Delort A-M (2006a) Biodegradation of polyethylene films with prooxidant additives. Chemosphere 64(8):1243–1252, Retrieved from http://www.sciencedirect.com/science/article/pii/S0045653506000439

    Article  CAS  Google Scholar 

  • Koutny M, Sancelme M, Dabin C, Pichon N, Delort A-M, Lemaire J (2006b) Acquired biodegradability of polyethylenes containing pro-oxidant additives. Polym Degrad Stab 91(7):1495–1503, Retrieved from http://www.sciencedirect.com/science/article/pii/S0141391005004611

    Article  CAS  Google Scholar 

  • Li Z, Lu H, Ren L, He L (2013) Experimental and modeling approaches for food waste composting: a review. Chemosphere 93(7):1247–57. doi:10.1016/j.chemosphere.2013.06.064

    Article  CAS  Google Scholar 

  • Lim, S. L., Lee, L. H., & Wu, T. Y. (2015). Sustainability of using composting and vermicomposting technologies for organic solid waste biotransformation: Recent overview, greenhouse gases emissions and economic analysis. J Clean Prod. doi:10.1016/j.jclepro.2015.08.083.

  • Luijsterburg B, Goossens H (2014) Assessment of plastic packaging waste: material origin, methods, properties. Resour Conserv Recy 85:88–97. doi:10.1016/j.resconrec.2013.10.010

    Article  Google Scholar 

  • Maheshwari DK (2014) Composting for sustainable agriculture. Springer International Publisher, Switzerland

  • Martínez-Blanco J, Colón J, Gabarrell X, Font X, Sánchez A, Artola A, Rieradevall J (2010) The use of life cycle assessment for the comparison of biowaste composting at home and full scale. Waste Manag 30(6):983–94. doi:10.1016/j.wasman.2010.02.023

    Article  Google Scholar 

  • Mat Saad, N. F., Ma’min, N. N., Md Zain, S., Ahmad Basri, N. E., Md Zaini, N. S. (2013). Composting of mixed yard and food wastes with effective microbes. Jurnal Teknologi, 65(2). doi:10.11113/jt.v65.2196.

  • Ojeda TFM, Dalmolin E, Forte MMC, Jacques RJS, Bento FM, Camargo FAO (2009) Abiotic and biotic degradation of oxo-biodegradable polyethylenes. Polym Degrad Stab 94:965–970

    Article  CAS  Google Scholar 

  • Plastics Europe. (2013). An analysis of European latest plastics production, demand and waste data. Retrieved from http://www.plasticseurope.org/Document/plastics-the-facts-2013.aspx?FolID = 2.

  • Puyuelo B, Colón J, Martín P, Sánchez A (2013) Comparison of compostable bags and aerated bins with conventional storage systems to collect the organic fraction of municipal solid waste from homes. A Catalonia case study. Waste Manag 33(6):1381–1389, Retrieved from http://www.sciencedirect.com/science/article/pii/S0956053X13000858

    Article  Google Scholar 

  • Roé-Sosa, A., Estrada, M. R., Calderas, F., Sánchez-Arévalo, F., Manero, O., & de Velasquez, M. T. O. L. (2015). between physicochemical and rheological parameters. J Appl Polym Sci, 132(43), n/a–n/a. doi:10.1002/app.42721

  • Sánchez-Monedero MA, Roig A, Paredes C, Bernal MP (2001) Nitrogen transformation during organic waste composting by the Rutgers system and its effects on pH, EC and maturity of the composting mixtures. Bioresour Technol 78(3):301–8, Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11341692

    Article  Google Scholar 

  • Scott G (2002) Degradable polymers: principles and applications. Kluwer Academic Publishers, Netherlands

    Book  Google Scholar 

  • Secretaría de Medio Ambiente y Recursos Naturales. (2013). Diagnóstico Básico para la gestión integral de los residuos 2012.

  • Selke S, Auras R, Nguyen TA, Castro Aguirre E, Cheruvathur R, Liu Y (2015) Evaluation of biodegradation-promoting additives for plastics. Environ Sci Technol 49(6):3769–77. doi:10.1021/es504258u

    Article  CAS  Google Scholar 

  • Singh, A., Parmar, N., & Kuhad, R. C. (Eds.). (2011). Bioaugmentation, biostimulation and biocontrol (Vol. 108). Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-642-19769-7

  • Smith SR, Jasim S (2009) Small-scale home composting of biodegradable household waste: overview of key results from a 3-year research programme in West London. Waste Manag Res 27(10):941–50. doi:10.1177/0734242X09103828

    Article  CAS  Google Scholar 

  • Stevens ES (2003) What makes green plastics green? Biocycle 24:24–27

  • Sundberg C, Smårs S, Jönsson H (2004) Low pH as an inhibiting factor in the transition from mesophilic to thermophilic phase in composting. Bioresour Technol 95(2):145–50. doi:10.1016/j.biortech.2004.01.016

    Article  CAS  Google Scholar 

  • Troschinetz AM, Mihelcic JR (2009) Sustainable recycling of municipal solid waste in developing countries. Waste Manag 29(2):915–23. doi:10.1016/j.wasman.2008.04.016

    Article  CAS  Google Scholar 

  • Tuomela M (2000) Biodegradation of lignin in a compost environment: a review. Bioresour Technol 72(2):169–183. doi:10.1016/S0960-8524(99)00104-2

    Article  CAS  Google Scholar 

  • Vijaya C, Reddy RM (2008) Impact of soil composting using municipal solid waste on biodegradation of plastics. Indian J Biotechnol 7(2):235–239, Retrieved from <Go to ISI>://WOS:000257916200014

    Google Scholar 

  • Xu L, Crawford K, Gorman CB (2011) Effects of temperature and pH on the degradation of poly(lactic acid) brushes. Macromolecules 44(12):4777–4782. doi:10.1021/ma2000948

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is part of the project “Evaluación de la biodegradabilidad y ecotoxicidad de plásticos oxodegradables y biodegradables en condiciones aerobias y anaerobias” sponsored by the Fondo mixto CONACYT—Gobierno del Distrito Federal, FM/CONACYT-GDV/05/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alethia Vázquez-Morillas.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quecholac-Piña, X., García-Rivera, M.A., Espinosa-Valdemar, R.M. et al. Biodegradation of compostable and oxodegradable plastic films by backyard composting and bioaugmentation. Environ Sci Pollut Res 24, 25725–25730 (2017). https://doi.org/10.1007/s11356-016-6553-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6553-0

Keywords

Navigation