Skip to main content
Log in

The cyanobacterium Synechocystis sp. PUPCCC 62: a potential candidate for biotransformation of Cr(VI) to Cr(III) in the presence of sulphate

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The cyanobacterium Synechocystis sp., an isolate from polluted water of Satluj river, India, was found resistant to chromium(VI) up to 200 nmol mL−1. In this study, it has been demonstrated that this organism takes up Cr(VI) through a phosphate transporter. The organism removed 250 nmol Cr(VI), 210 nmol phosphate and 180 nmol sulphate mg−1 protein from a buffer solution in 8 h. Cr(VI) uptake by the organism decreased to 135 nmol Cr(VI) removed per milligram protein in the presence of 200 nmol phosphate mL−1, but the same concentration of sulphate did not affect the Cr(VI) uptake. Similarly, the presence of Cr(VI) in the solution affected the phosphate uptake but not sulphate uptake by the test organism. The kinetic studies on Cr(VI) uptake in the presence of phosphate revealed that phosphate and Cr(VI) acted as competitive inhibitors for one another. Phosphate-starved cells of the organism removed more amount of Cr(VI) than the basal medium-grown cells. The uptake of Cr(VI) as well as phosphate by the organism was observed to be a light-dependent process. Cinnamic acid, a phosphate transporter inhibitor, inhibited Cr(VI) uptake by the organism. Results clearly demonstrated that the test organism takes up chromate ions by phosphate transporter and not by the sulphate transporter. This organism is thus a potential candidate for the bioremediation of Cr(VI) from Cr(VI) and sulphate-laden water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahemad M (2014) Bacterial mechanism for Cr(VI) resistance and reduction: an overview and recent advances. Folia Microbiol 59:321–332

    Article  CAS  Google Scholar 

  • Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98:2243–2257

    Article  CAS  Google Scholar 

  • Alvarez AH, Moreno-Sänchez R, Cervantes C (1999) Chromate efflux by means of the ChrA chromate resistance protein from Pseudomonas aeruginosa. J Bacteriol 181:7398–7400

    CAS  Google Scholar 

  • APHA (American Public Health Association), American Water Works Association (AWWA), Water Environment Federation (WEF) (2005) Standard methods for the examination of water and wastewater, 21st edn. Washington DC, pp 3–20

  • Baziramakenga R, Simard RR, Leroux GD (1994) Effect of benzoic and cinnamic acids on growth, mineral composition and chlorophyll content of soyabean. J Chem Ecol 20:2821–2833

    Article  CAS  Google Scholar 

  • Brown SD, Thompson MR, Verberkmoes NC, Chourey K, Shah M, Zhou J, Hettich RL, Thompson DK (2006) Molecular dynamics of the Shewanella oneidensis response to chromate stress. Mol Cell Proteomics 5:1054–1071

    Article  CAS  Google Scholar 

  • Cervantes C, Campos-García J (2007) Reduction and efflux of chromate by bacteria. In: Nies DH, Silver S (eds) Molecular microbiology of heavy metals. Springer, Berlin, pp 407–420

    Chapter  Google Scholar 

  • Cervantes C, Campos-García J, Devars S, Corona FG, Tavera HL, Guzman JC, Sanchez RM (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347

    Article  CAS  Google Scholar 

  • Cheung KH, Gu JD (2007) Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. Int Biodeterior Biodegrad 59:8–15

    Article  CAS  Google Scholar 

  • Chiong M, Gozalez E, Barra R, Vasquez C (1988) Purification and biochemical characterization of tellurite-reducing activities in Pseudomonas thermophilus HB8. J Bacteriol 170:3269–3273

    CAS  Google Scholar 

  • Cooke VM, Hughes MN, Poole RK (1995) Reduction of chromate by bacteria isolated from the cooling water of an electricity generating station. J Ind Microbiol 14:323–328

    Article  CAS  Google Scholar 

  • Dreyfuss J (1964) Characterization of a sulfate and thiosulfate transporting system in Salmonella typhimurium. J Biol Chem 239:2292–2297

    CAS  Google Scholar 

  • Dursun A, Ulsu G, Cuci Y, Aksu Z (2003) Bioaccumulation of copper(II), lead(II) and chromium(VI) by growing Aspergillus niger. Process Biochem 38:1647–1651

    Article  CAS  Google Scholar 

  • Fernandez-Valiente E, Avendano MC (1993) Sodium-stimulation of phosphate uptake in the cyanobacterium Anabaena PCC 7119. Plant Cell Physiol 34:201–207

    CAS  Google Scholar 

  • Fulladosa E, Desjardin V, Murat JC, Gourdon R, Villaescusa I (2006) Cr(VI) reduction into Cr(III) as a mechanism to explain the low sensitivity of Vibrio fischeri bioassay to detect chromium pollution. Chemosphere 65:644–650

    Article  CAS  Google Scholar 

  • Garbisu C, Alkorta I, Llama MJ, Serra JL (1998) Aerobic chromate reduction by Bacillus subtilis. Biodegradation 9:133–141

    Article  CAS  Google Scholar 

  • Gibb HJ, Lees PSJ, Pinsky PF, Rooney BC (2000) Lung cancer among workers in chromium chemical production. Am J Ind Med 38:115–126

    Article  CAS  Google Scholar 

  • Guillen-Jimenez FM, Morales-Barrera L, Morales-Jimenez J, Hernandez-Rodrıguez CH, Cristiani-Urbina E (2008) Modulation of tolerance to Cr(VI) and Cr(VI) reduction by sulphate ion in a Candida yeast strain isolated from tannery wastewater. J Ind Microbiol Biotechnol 35:1277–1287

    Article  CAS  Google Scholar 

  • Gupta SL, Kashyap AK (1984) Impact of copper on phosphate uptake in Anacystis nidulans and cyanophage AS-resistant mutant. Adv Biol Res 1–2:37–40

    Google Scholar 

  • Gupta VK, Rastogi A (2008) Sorption and desorption studies of chromium(VI) from nonviable cyanobacterium Nostoc muscorum biomass. J Hazard Mater 154:347–354

    Article  CAS  Google Scholar 

  • Gupta VK, Sharma S (2003) Removal of zinc from aqueous solutions using bagasse fly ash—a low cost adsorbent. Ind Eng Chem Res 42:6619–6624

    Article  CAS  Google Scholar 

  • Hassen A, Saidi N, Cherif M, Boudabous M (1998) Effects of heavy metals on Pseudomonas aeruginosa and Bacillus thrungiensis. Bioresour Technol 65:73–82

    Article  CAS  Google Scholar 

  • Hryniewicz M, Sirko A, Palucha A, Bock A, Hulanicka D (1990) Sulfate and thiosulfate transport in Escherichia coli K-12: identification of a gene encoding a novel protein involved in thiosulfate binding. J Bacteriol 172:3358–3366

    CAS  Google Scholar 

  • Ishibashi Y, Cervantes C, Silver S (1990) Chromium reduction in Pseudomonas putida. Appl Environ Microbiol 56:2268–2270

    CAS  Google Scholar 

  • Kang C, Wu P, Li Y, Ruan B, Zhu N, Dang Z (2014) Estimates of heavy metal tolerance and chromium(VI) reducing ability of Pseudomonas aeruginosa CCTCC AB93066: chromium(VI) toxicity and environmental parameters optimization. World J Microbiol Biotechnol. doi:10.1007/s11274-014-1697-x

    Google Scholar 

  • Karbonowska H, Wiater A, Hulanicka D (1977) Sulphate permease of Escherichia coli K12. Acta Biochim Pol 24:329–334

    CAS  Google Scholar 

  • Khattar JIS, Parveen S, Singh Y, Singh DP, Gulati A (2014) Intracellular uptake and reduction of hexavalent chromium by the cyanobacterium Synechocystis sp. PUPCCC 62. J Appl Phycol. doi:10.1007/s10811-014-0374-7

    Google Scholar 

  • Kilic NK, Stensballe A, Otzen DE, Donmez G (2010) Proteomic changes in response to chromium(VI) toxicity in Pseudomonas aeruginosa. Bioresour Technol 101:2134–2140

    Article  CAS  Google Scholar 

  • Kulaev IS, Vagabov VM (1983) Polyphosphate metabolism in micro-organisms. Adv Microb Physiol 24:83–171

    Article  CAS  Google Scholar 

  • Kurniawan T, Chan G, Lo W, Babel S (2006) Physicochemical treatment techniques for wastewater laden with heavy metals. Chem Eng J 118:83–98

    Article  CAS  Google Scholar 

  • Langård S (1990) 100 years of chromium and cancer—a review of epidemiological evidence and selected case-reports. Am J Ind Med 17:189–215

    Article  Google Scholar 

  • Lebedeva EV, Lyalikova NN (1979) Reduction of crocoite by Pseudomonas chromatophillia sp. Mikrobiologiya 48:517–522

    CAS  Google Scholar 

  • Liu YG, Xu WH, Zeng GM, Li X, Ga OH (2006) Cr(VI) reduction by Bacillus sp. isolated from chromium landfill. Process Biochem 41:1981–1986

    Article  CAS  Google Scholar 

  • Losi ME, Amrhein C Jr, Frankenberger WT (1994) Environmental biochemistry of chromium. Rev Environ Contam Toxicol 36:91–121

    Google Scholar 

  • Lowry OH, Resebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin-phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Mallick N, Rai LC (1994) Kinetic studies of mineral uptake and enzyme activities of Anabaena doliolum under metal stress. J Gen Appl Microbiol 40:123–133

    Article  CAS  Google Scholar 

  • Morokutti A, Lyskowski A, Sollner S, Pointner E, Fitzpatrick TB, Kratky C, Gruber K, Macheroux P (2005) Structure and function of YcnD from Bacillus subtilis, a flavin-containing oxidoreductase. Biochemistry 44:13724–13733

    Article  CAS  Google Scholar 

  • Narayani M, Shetty VK (2013) Chromium resistant bacteria and their environmental condition for hexavalent chromium removal: a review. Crit Rev Environ Sci Technol 43:955–1009

    Article  CAS  Google Scholar 

  • Nies A, Nies DH, Silver S (1989) Cloning and expression of plasmid genes encoding resistance to chromate and cobalt in Alcaligenes eutrophus. J Bacteriol 171:5065–5070

    CAS  Google Scholar 

  • Ohtake H, Cervantes C, Silver S (1987) Decreased chromate uptake in Pseudomonas fuorescens carrying a chromate resistance plasmid. J Bacteriol 169:3853–3856

    CAS  Google Scholar 

  • Ozturk S, Aslim B, Suludere Z (2009) Evaluation of chromium(VI) removal behaviour by two isolates of Synechocystis sp. in terms of exopolysaccharide (EPS) production and monomer composition. Bioresour Technol 100:5588–5593

    Article  CAS  Google Scholar 

  • Philip L, Iyengar L, Venkobachar C (1998) Cr(VI) reduction by Bacillus coagulans isolated from contaminated soils. J Environ Eng 124:1165–1170

    Article  CAS  Google Scholar 

  • Ramírez-Díaz MI, Díaz-Pérez C, Vargas E, Riveros-Rosas H, Campos-García J, Cervantes C (2008) Mechanisms of bacterial resistance to chromium compounds. Biometals 21:321–332

    Article  Google Scholar 

  • Ritchie RJ, Trautman DA, Larkum AWD (1997) Phosphate uptake in the cyanobacterium Synechococcus R-2 PCC 7942. Plant Cell Physiol 38:1232–1241

    Article  CAS  Google Scholar 

  • Safferman RS, Morris ME (1964) Growth characteristics of the blue green algal virus LPP-1. J Bacteriol 88:771–775

    CAS  Google Scholar 

  • Saha B, Orvig C (2010) Biosorbents for hexavalent chromium elimination from industrial and municipal effluents. Coord Chem Rev 254:2959–2972

    Article  CAS  Google Scholar 

  • Singh AL, Krishna PM, Rao TN, Sarma PN (2006) Uptake of Cr(VI) in the presence of sulphate by Bacillus mycoides in aerobic environment. Indian J Biotechnol 5:506–509

    CAS  Google Scholar 

  • Sirko A, Hulanicka, Hryniewicz D, Bock A (1990) Sulfate and thiosulfate transport in Escherichia coli K-12: nucleotide sequence and expression of the cysTWAM gene cluster. J Bacteriol 172:3351–3357

    CAS  Google Scholar 

  • Soni SK, Singh R, Awasthi A, Singh M, Kalra A (2013) In vitro Cr(VI) reduction by cell-free extracts of chromate-reducing bacteria isolated from tannery effluent irrigated soil. Environ Sci Pollut Res 20:1661–1674

    Article  CAS  Google Scholar 

  • Tahri Joutey N, Bahafid W, Sayel H, Ananou S, El Ghachtouli N (2014) Hexavalent chromium removal by the novel Serratia proteamaculans isolated from the bank of Sebou River (Morocco). Environ Sci Pollut Res 21:3060–3072

    Article  CAS  Google Scholar 

  • Villegas LB, Pereira CE, Colin VL, Abate CM (2013) The effect of sulphate and phosphate ions on Cr(VI) reduction by Streptomyces sp. MC1, including studies of growth and pleomorphism. Int Biodeterior Biodegrad 82:149–156

    Article  CAS  Google Scholar 

  • Viti C, Pace A, Giovannetti L (2003) Characterization of Cr(VI) resistant bacteria isolated from chromium contaminated soil by tannery activity. Curr Microbiol 46:1–5

    Article  CAS  Google Scholar 

  • Wagner F, Falkner G (1992) Concomitant changes in phosphate uptake and photophosphorylation in the blue-green alga Anacystis nidulans during adaptation to phosphate deficiency. J Plant Physiol 140:163–167

    Article  CAS  Google Scholar 

  • Yewalkar S, Dhumal K, Sainis J (2007) Chromium (VI)-reducing Chlorella spp. isolated from disposal sites of paper-pulp and electroplating industry. J Appl Phycol 19:459–465

    Article  CAS  Google Scholar 

  • Zakaria ZA, Zakaria Z, Surif S, Ahmad WA (2007) Hexavalent chromium reduction by Acinetobacter haemolyticus isolated from heavy-metal contaminated wastewater. J Hazard Mater 146:30–38

    Article  CAS  Google Scholar 

  • Zhong QQ, Yue QY, Li Q, Gao BY, Xu X (2014) Removal of Cu(II) and Cr(VI) from wastewater by an amphoteric sorbent based on cellulose-rich biomass. Carbohydr Polym 111:788–796

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Head of the Department of Botany, and the Coordinator, SAP-II of UGC, Punjabi University, Patiala for laboratory facilities. Shahnaz gratefully acknowledges the financial support in the form of the Maulana Azad National Fellowship by University Grants Commission, New Delhi.

Conflict of interest

There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. I. S. Khattar.

Additional information

Responsible editor: Robert Duran

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parveen, S., Khattar, J.I.S. & Singh, D.P. The cyanobacterium Synechocystis sp. PUPCCC 62: a potential candidate for biotransformation of Cr(VI) to Cr(III) in the presence of sulphate. Environ Sci Pollut Res 22, 10661–10668 (2015). https://doi.org/10.1007/s11356-015-4260-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4260-x

Keywords

Navigation