Skip to main content

Advertisement

Log in

Biosequestration of lead using Bacillus strains isolated from seleniferous soils and sediments of Punjab

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The present study was conducted to isolate and explore bacterial strains with a potential to sequester lead (Pb) and tolerate other heavy metals from industrial effluents and sediments. Out of the six bacterial strains isolated from seleniferous sites of Punjab, three isolates (RS-1, RS-2, and RS-3) were screened out for further growth-associated lead sequestration and molecular characterization on the basis of their tolerance toward lead and other heavy metals. Biomass and cell-free supernatant were analyzed for lead contents using ICP-MS after growth-associated lead sequestration studies in tryptone soya broth (pH = 7.2 ± 0.2) under aerobic conditions at 37 °C temperature. Almost 82 % and 70 % divalent lead was sequestered in cell pellets of RS-1 and RS-3, respectively while only 45 % of lead was found in cell pellet of RS-2 in the first 24 h. However, significant biosequestration of lead was observed in RS-2 after 48 h of incubation with concomitant increase in biomass. Simultaneously, morphological, biochemical, and physiological characterization of selected strains was carried out. 16S rRNA gene sequence of these isolates revealed their phylogenetic relationship with class Bacillaceae, a low G + C firmicutes showing 98 % homology with Bacillus sp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmad E, Zaidi A, Khan MS, Oves M (2012) Heavy metal toxicity to symbiotic nitrogen-fixing microorganism and host legumes. In: Zaidi A, Wani PA, Khan MS (eds) Toxicity of Heavy Metals to Legumes and Bioremediation. Springer Verlag Wein, New York, pp 29–44

    Chapter  Google Scholar 

  • Alfven T, Jarup L, Elinder CG (2002) Cadmium and lead in blood in relation to low bone mineral density and tubular proteinuria. Environ Health Perspect 110:699–702

    Article  CAS  Google Scholar 

  • Al-Garni SM (2005) Biosorption of lead by Gram-negative capsulated and non-capsulated bacteria. Water SA 31:3

    Google Scholar 

  • Altschul SF, Thomas LM, Alejandro AS, Zhang J, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acid Res 25:3389–3402

    Article  CAS  Google Scholar 

  • Chen J, Qin J, Zhu Y, Lorenzo V, Rosen BP (2013) Engineering the soil bacterium Pseudomonas putida for arsenic methylation. Appl Environ Microbiol 79:4493–4495

    Article  CAS  Google Scholar 

  • Cole JR, Chai B, Farris RJ, Wang Q, Kulam-Syed-Mohidden AS, McGarrell DM, Bandela AM, Cardenas E, Garrity GM, Tieje JM (2007) The ribosomal database project (RDP-II): introducing my RDP space and quality controlled public data. Nucl Acid Res 35(Database issue):D169–D172

    Article  CAS  Google Scholar 

  • Deng L, Su Y, Su H, Wang X, Zhu X (2007) Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis. J Haz Mat 143:220–225

    Article  CAS  Google Scholar 

  • Dhanjal S, Cameotra SS (2010) Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil. Microb Cell Fact 9:52

    Article  Google Scholar 

  • Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF, Sashti NA, Meagher RB (2002) Engineering tolerance and hyper accumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nat Biotechnol 20:1140–1145

    Article  CAS  Google Scholar 

  • Edwards S, Kjellerup BV (2013) Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals. Appl Microbiol Biotechnol 97:9909–9921

    Article  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Gadd GM (1990) Heavy metal accumulation by bacteria and other microorganisms. Experientia 46:834–840

    Article  CAS  Google Scholar 

  • Gonzalez AG, Shirokova LS, Pokrovsky OS, Emnova EE, Martinez RE, Santana-Casiano JM, Gonzalez-Davila M, Pokrovski GS (2010) Adsorption of copper on Pseudomonas aureofaciens : Protective role of surface exopolysaccharides. J Coll Inter Sci 350:305–314

    Article  CAS  Google Scholar 

  • Gupta VK, Ali I (2004) Removal of lead and chromium from waste-water using bagasse fly ash—a sugar industry waste. J Colloid Interface Sci 271:321–328

    Article  CAS  Google Scholar 

  • Gupta S, Nirwan J (2014) Evaluation of mercury biotransformation by heavy metal-tolerant Alcaligenes strain isolated from industrial sludge. Int J Environ Sci Technol. doi:10.1007/s13762-013-0484-9

    Google Scholar 

  • Gupta S, Prakash R, Tejoprakash N et al (2010) Selenium mobilization of Pseudomonas aeruginosa (SNT-SG1) isolated from seleniferous soils from India. Geomicrobiol J 27:35–42

    Article  CAS  Google Scholar 

  • Gupta S, Goyal R, Nirwan J, Cameotra SS, Tejoprakash N (2012) Bio sequestration, transformation and volatilization of mercury by Lysinibacillus fusiformis isolated from industrial effluent. J Microbiol Biotechnol 22:684–689

    Article  CAS  Google Scholar 

  • Gutierrez T, Biller DV, Shimmield T, Green DH (2012) Metal binding properties of the EPS produced by Halomonas sp. TG39 and its potential in enhancing trace element bioavailability to eukaryotic phytoplankton. Biometals 25:1185–1194

    Article  CAS  Google Scholar 

  • Halttunen T (2007) Removal of lead, cadmium and arsenic from water by lactic acid bacteria. Dissertation, Department of Biochemistry and Food Chemistry, University of Turku, Turku

  • Hayes AW (2007) Principles and methods of toxicology. Taylor & Francis press, Philadelphia

    Book  Google Scholar 

  • Howlett NG, Avery SV (1997) Induction of lipid peroxidation during heavy metal stress in Saccharomyces cerevisiae and influence of plasma membrane fatty acid unsaturation. Appl Environ Microbiol 63:2971–2976

    CAS  Google Scholar 

  • Iyer A, Mody K, Jha B (2005) Biosorption of heavy metals by a marine bacterium. Mar Poll Bull 50:340–343

    Article  CAS  Google Scholar 

  • Jaroslawiecka A, Piotrowska-Seget Z (2014) Lead resistance in micro-organisms. Microbiology 160:12–25

    Article  CAS  Google Scholar 

  • Jaysankar D, Ramaiah N, Vardanyan L (2008) Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury. Mar Biotechnol 10:471–477

    Article  Google Scholar 

  • Kogej A, Likozar B, Pavko A (2010) Lead Biosorption by self-immobilized Rhizopus nigricans pellets in a laboratory scale packed bed column: mathematical model and experiment. Food Technol Biotechnol 48:344–351

    CAS  Google Scholar 

  • Kumar A, Gupta S, Cameotra S (2012) Screening and characterization of potential cadmium biosorbent Alcaligenes strain from Industrial effluent. J Basic Microbiol 52:160–166

    Article  CAS  Google Scholar 

  • Lemire JA, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11:371–384

    Article  CAS  Google Scholar 

  • Luoma SN, Rainbow PS (2008) Metal contamination in aquatic environments: science and lateral management. Cambridge University Press, Cambridge

    Google Scholar 

  • Maidak BL, Cole JR, Lilburn TG, Parker CT Jr, Saxman PR, Farris RJ, Garrity GM, Olsen GJ, Schmidt TM, Tiedje JM (2001) The RDP-II (ribosomal database project). Nucl Acid Res 29:173–174

    Article  CAS  Google Scholar 

  • Malik A (2004) Metal bioremediation through growing cells. Environ Inter 30:261–278

    Article  CAS  Google Scholar 

  • McLaughlin MJ, Parker DR, Clarke JM (1999) Metals and micronutrients-food safety issues. Field Crop Res 60:143–163

    Article  Google Scholar 

  • Merroun, ML (2007) Interactions between metals and bacteria: fundamental and applied research In: Méndez-Vilas A (ed) Communicating current research and educational topics and trends in applied microbiology, pp 108–119

  • Mohamed RM, Abo-Amer AE (2012) Isolation and characterization of heavy-metal resistant microbes from roadside soil and phylloplane. J Basic Microbiol 52:53–65

    Article  CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  CAS  Google Scholar 

  • Nordberg G (2003) Cadmium and human health: a perspective based on recent studies in China. J Trace Elem Exp Med 16:307–319

    Article  CAS  Google Scholar 

  • Peralta-Videa JR, Lopez ML, Narayan M, Saupe G, Gardea-Torresdey J (2009) The biochemistry of environmental heavy metal uptake by plants: Implications for the food chain. Int J Biochem Cell Biol 41:1665–1677

    CAS  Google Scholar 

  • Rico M, Lopez A, Santana-Casiano JM, Gonzalez AG, Gonzalez-Davila M (2013) Variability of the phenolic profile in the diatom Phaeodactylum tricornutum growing under copper and iron stress. Limnol Oceanogr 58:144–152

    Article  CAS  Google Scholar 

  • Roane TM, Josephson KL, Pepper IL (2001) Dual-bioaugmentation strategy to enhance remediation of co-contaminated soil. Appl Environ Microbiol 67:3208–3215

    CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor press, New York

    Google Scholar 

  • Schaller J, Weiske A, Mkandawire M, Dudel EG (2010) Invertebrates control metals and arsenic sequestration as ecosystem engineers. Chemosphere 79:169–173

    Article  CAS  Google Scholar 

  • Singh SK, Tripathi VR, Jain RK, Vikram S, Garg SK (2010) An antibiotic, heavy metal resistant and halotolerant Bacillus cereus SIU1 and its thermoalkaline protease. Microb Cell Fact 9:59

    Article  Google Scholar 

  • Sulaymon AH, Ebrahim SE, Mohammed-Ridha MJ (2013) Equilibrium, kinetic, and thermodynamic biosorption of Pb (II), Cr (III), and Cd (II) ions by dead anaerobic biomass from synthetic wastewater. Environ Sci Pollut Res 20:175–187

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  Google Scholar 

  • Thomson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucl Acid Res 22:4673–4680

    Article  Google Scholar 

  • Veglio F, Beolchini F (1997) Removal of metals by biosorption: A review. Hydrometall 44:301–316

    Article  CAS  Google Scholar 

  • Vieira DM, Augusto da Costa AC, Henriques CA, Cardoso VL, Pessoa de Franca F (2007) Biosorption of lead by the brown seaweed Sargassum filipendula—batch and continuous pilot studies. Elec J Biotech 10:369–375

    Article  Google Scholar 

  • Volesky B (1990) Biosorption of heavy metals. CRC Press, Boca Raton

    Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    CAS  Google Scholar 

  • White C, Wilkinson SC, Gadd GM (1995) The role of microorganisms in biosorption of toxic metals and radionuclides. Intern Biodeterior Biodegrad 35:17–40

    Article  CAS  Google Scholar 

  • Yetis U, Dolek A, Dilek FB, Ozcengiz G (2000) The removal of Pb (II) by Phanerochaete chrysosporium. Water Res 34:4090–4100

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurabh Gupta.

Additional information

Responsible editor: Robert Duran

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Goyal, R. & Prakash, N.T. Biosequestration of lead using Bacillus strains isolated from seleniferous soils and sediments of Punjab. Environ Sci Pollut Res 21, 10186–10193 (2014). https://doi.org/10.1007/s11356-014-2951-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2951-3

Keywords

Navigation