Skip to main content

Advertisement

Log in

Assessing the impact of organic and inorganic amendments on the toxicity and bioavailability of a metal-contaminated soil to the earthworm Eisenia andrei

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Metal-contaminated soil, from the El Arteal mining district (SE Spain), was remediated with organic (6 % compost) and inorganic amendments (8 % marble sludge) to reduce the mobility of metals and to modify its potential environmental impact. Different measures of metal bioavailability (chemical analysis; survival, growth, reproduction and bioaccumulation in the earthworm Eisenia andrei), were tested in order to evaluate the efficacy of organic and inorganic amendments as immobilizing agents in reducing metal (bio)availability in the contaminated soil. The inorganic amendment reduced water and CaCl2-extractable concentrations of Cd, Pb, and Zn, while the organic amendment increased these concentrations compared to the untreated soil. The inorganic treatment did not significantly reduce toxicity for the earthworm E. andrei after 28 days exposure. The organic amendment however, made the metal-contaminated soil more toxic to the earthworms, with all earthworms dying in undiluted soil and completely inhibiting reproduction at concentrations higher than 25 %. This may be due to increased available metal concentrations and higher electrical conductivity in the compost-amended soil. No effects of organic and inorganic treatments on metal bioaccumulation in the earthworms were found and metal concentrations in the earthworms increased with increasing total soil concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adriano DC, Wenzel WW, Vangronsveld J, Bolan NS (2004) Role of assisted natural remediation in environmental cleanup. Geoderma 122:121–142

    Article  CAS  Google Scholar 

  • Alloway BJ, Thornton I, Smart GA, Sherlock JC, Quinn MJ (1998) Metal availability. Sci Total Environ 75:41–69

    Article  Google Scholar 

  • Baes CF Jr, Mesmer RE (1976) The hydrolysis of cations. Wiley, New York, New York

    Google Scholar 

  • Becquer T, Dai J, Quantin C, Lavelle P (2005) Sources of bioavailable trace metals for earthworms from a Zn-, Pb-, and Cd-contaminated soil. Soil Biol Biochem 37:1564–1568

    Article  CAS  Google Scholar 

  • BOE (2005) Real decreto 824/2005, de 8 de julio, sobre productos fertilizantes. Bol Oficial Estado 171:25592–25669

    Google Scholar 

  • Crommentuijn T, Doodeman CJAM, Doornekamp A, Van Der Pol JJC, Van Gestel CAM, Bedaux JJM (1994) Lethal body concentrations and accumulation patterns determine time-dependent toxicity of cadmium in soil arthropods. Environ Toxicol Chem 13:1781–1789

    Article  CAS  Google Scholar 

  • Crommentuijn T, Doornekamp A, Van Gestel CAM (1997) Bioavailability and ecological effects of cadmium on Folsomia candida (Willem) in an artificial soil substrate as influenced by pH and organic matter. Appl Soil Ecol 5:261–271

    Article  Google Scholar 

  • Dai J, Becquer T, Rouiller JH, Reversat G, Bernhard-Reversat F, Nahmani J, Lavelle P (2004) Heavy metal accumulation by two earthworm species and its relationship to total and DTPA-extractable metals in soils. Soil Biol Biochem 36:91–98

    Article  CAS  Google Scholar 

  • Escoto M, Fernandez J, Martín F (2007) Determination of phytotoxicity of soluble elements in soils, based on a bioassay with lettuce (Lactuca sativa L.). Sci Total Environ 378:63–66

    Article  Google Scholar 

  • Fountain MT, Hopkin SP (2004) A comparative study of the effects of metal contamination on Collembola in the field and in the laboratory. Ecotoxicology 13:573–587

    Article  CAS  Google Scholar 

  • Friels W, Lombi E, Horak O, Wenzel WW (2003) Immobilisation of heavy metals in soils using inorganic amendments in a greenhouse study. J Plant Nutr Soil Sci 166:191–196

    Article  Google Scholar 

  • Garrido F, Illera V, García-González MT (2005) Effect of the addition of gypsum- and lime-rich industrial by-products on Cd, Cu and Pb availability and leachability in metal-spiked acid soils. Appl Geochem 20:397–408

    Article  CAS  Google Scholar 

  • González V, Diez-Ortiz M, Simón M, Van Gestel CAM (2011) Application of bioassays with Enchytraeus crypticus and Folsomia candida to evaluate the toxicity of a metal-contaminated soil, before and after remediation. J Soils Sediment 11:1199–1208

    Article  Google Scholar 

  • Grumiaux F, Demuynck S, Schikorski D, Lemière S, Leprêtre A (2010) Assessing the effects of FBC ash treatments of metal-contaminated soils using life history traits and metal bioaccumulation analysis of the earthworm Eisenia andrei. Chemosphere 79:156–161

    Article  CAS  Google Scholar 

  • Haanstra L, Doelman P, Oude Vashaar JH (1985) The use of sigmoidal dose response curves in soil ecotoxicological research. Plant Soil 84:293–297

    Article  CAS  Google Scholar 

  • Hobbelen PHF, Koolhaas JE, van Gestel CAM (2004) Risk assessment of heavy metal pollution for detritivores in floodplain soils in the Biesbosch, The Netherlands, taking bioavailability into account. Environ Pollut 129:409–419

    Article  CAS  Google Scholar 

  • Hooda PS, Alloway BJ (1994) Changes in operational fractions of trace metals in two soils during two years of reaction time following sewage sludge treatment. Int J Environ Anal Chem 57:289–311

    Article  CAS  Google Scholar 

  • Hsu JH, Lo S-L (2000) Effect of dissolved organic carbon on leaching of copper and zinc from swine manure compost. Water Sci Technol 42:247–252

    CAS  Google Scholar 

  • ISO (1999) Soil quality—inhibition of reproduction of Collembola (Folsomia candida) by soil pollutants. ISO 11267. International Standardization Organization, Geneva

    Google Scholar 

  • Kiekens L (1995) Zinc. In: Alloway BJ (ed) Heavy metals in soils, 2nd edn. Blackie, Glasgow, UK, pp 284–305

    Chapter  Google Scholar 

  • Lanno R, Wells J, Conder J, Bradham K, Basta N (2004) The bioavailability of chemicals in soil for earthworms. Ecotoxicol Environ Saf 57:39–47

    Article  CAS  Google Scholar 

  • Loureiro S, Ferreira ALG, Soares MVM, Nogueira AJA (2005) Evaluation of the toxicity of two soils from Jales Mine (Portugal) using aquatic bioassays. Chemosphere 61:168–177

    Article  CAS  Google Scholar 

  • Loveland PJ, Whalley WR (1991) Particle size analysis. In: Smith KA, Mullis CE (eds) Soil analysis: physical methods. Marcel Dekker, New York, pp 271–328

    Google Scholar 

  • Marinussen MPJC, van der Zee SEATM, de Haan FM (1997) Cu accumulation in Lumbricus rubellus under laboratory conditions compared with accumulation under field conditions. Ecotoxicol Environ Saf 36:17–26

    Article  CAS  Google Scholar 

  • Melgar-Ramírez R, González V, Sánchez JA, García I (2012) Effects of application of organic and inorganic wastes for restoration of sulphur-mine soil. Water Air Soil Pollut 223:6123–6131

    Article  Google Scholar 

  • Mench M, Bussiere S, Vangronsveld J, Manceau A (2003) Progress in remediation and revegetation of the barren Jales gold mine spoil after in-situ treatments. Plant Soil 249:187–202

    Article  CAS  Google Scholar 

  • Mench M, Renella G, Gelsomino A, Landi L, Nannipieri P (2006) Biochemical parameters and bacterial species richness in soils contaminated by sludge-borne metals and remediated with inorganic soil amendments. Environ Pollut 144:24–31

    Article  CAS  Google Scholar 

  • Morgan AJ, Evans M, Winters C, Gane M, Davies MS (2002) Assaying the effects of chemical ameliorants with earthworms and plants exposed to a heavily polluted metalliferous soil. Eur J Soil Biol 38:323–327

    Article  CAS  Google Scholar 

  • Morillo J, Usero J, Garcia I (2004) Heavy metal distribution in marine sediments from the southwest coast of Spain. Chemosphere 58:431–442

    Article  Google Scholar 

  • OECD (2004) Guideline for the testing of chemicals no. 222, earthworm reproduction test (Eisenia fetida/Eisenia andrei). Organization for Economic Cooperation and Development, Paris

    Google Scholar 

  • Owojori OJ, Reinecke AJ, Rozanov AB (2008) Effects of salinity on partitioning, uptake and toxicity of zinc in the earthworm Eisenia fetida. Soil Biol Biochem 40:2385–2393

    Article  CAS  Google Scholar 

  • Peijnenburg WJGM, Baerselman R, de Groot AC, Jager T, Posthuma L, van Veen RPM (1999) Relating environmental availability to bioavailability: soil-type-dependent metal accumulation in the oligochaete Eisenia andrei. Ecotoxicol Environ Saf 44:294–310

    Article  CAS  Google Scholar 

  • Rhoades JD (1982) Cation exchange capacity. In: Page AL (ed) Methods of soil analysis, Part 2. American Society of Agronomy, Madison, WI, pp 149–157

    Google Scholar 

  • Saar RA, Weber JH (1980) Lead (II)-fulvic acid complexes. Conditional stability, and implications for lead (II) mobility. Environ Sci Technol 14:877–880

    Article  CAS  Google Scholar 

  • Scaps P, Grelle C, Descamps M (1997) Cadmium and lead accumulation in the earthworm Eisenia fetida (Savigny) and its impact on cholinesterase and metabolic pathway enzyme activity. Comp Biochem Physiol 116:233–238

    Google Scholar 

  • Sierra M (2005) Niveles de metales pesados y elementos asociados en suelos de la provincia de Almería. Parámetros que los afectan y riesgo de contaminación. Ph.D. Thesis, Univ. Granada, Spain

  • Sierra M, Martínez FJ, Aguilar J (2007) Baselines for trace elements and evaluation of environmental risk in soil of Almería (SE Spain). Geoderma 139:209–219

    Article  CAS  Google Scholar 

  • Simón M, Dorronsoro C, Ortiz I, Martín F, Aguilar J (2002) Pollution of carbonate with in a Mediterranean climate due to a tailing spill. Eur J Soil Sci 53:321–330

    Article  Google Scholar 

  • Spurgeon DJ, Hopkin SP (1996) Effects of variations in the organic matter content and pH of soils on the availability and toxicity of zinc to the earthworm Eisenia fetida. Pedobiologia 40:80–96

    CAS  Google Scholar 

  • Spurgeon DJ, Hopkin SP, Jones DT (1994) Effects of cadmium, copper, lead and zinc on growth, reproduction and survival of the earthworm Eisenia fetida (savigny): assessing the environmental impact of point-source metal contamination in terrestrial ecosystems. Environ Pollut 84:123–130

    Article  CAS  Google Scholar 

  • Stein JK (1983) Earthworm activity: a source of potential disturbance of archaeological sediments. Am Antiq 48:277–289

    Article  Google Scholar 

  • Stevenson FJ (1992) Humus chemistry. Genesis, composition and reactions. Wiley, New York, 1992

    Google Scholar 

  • U.S. Salinity Laboratory Staff (1954) Diagnosis and improvement of saline and alkali soils. Handbook. US Department of Agriculture, Washington DC

    Google Scholar 

  • Van Gestel CAM, Van Dis WA, Van Breemen EM, Sparenburg PM (1989) Development of a standardized reproduction toxicity test with the earthworm species Eisenia andrei using copper, pentachlorophenol and 2,4-dichloroaniline. Ecotoxicol Environ Saf 18:305–312

    Article  Google Scholar 

  • Van Gestel CAM, Dirven-Van Breemen EM, Baerselman R (1992) Influence of environmental conditions on the growth and reproduction of the earthworm Eisenia andrei in an artificial soil substrate. Pedobiologia 36:109–120

    Google Scholar 

  • Van Gestel CAM, Dirven-van Breemen EM, Baerselman R (1993) Accumulation and elimination of cadmium, chromium and zinc and effects on growth and reproduction in Eisenia andrei (Oligochaeta, Annelida). Sci Total Environ 134(Suppl 1):585–597

    Article  Google Scholar 

  • Vangronsveld J, Ruttens A, Colpaert J, van der Lelie D (2000) In situ fixation and phytostabilization of metals in polluted soils. In: Luo YM et al (eds) Proc. Int. Conf. Soil Remediation Soil-Rem. Chinese Acad. Sci., Hangzhou, China, pp 262–267

  • Veltman K, Huijbregts MAJ, Vijver MG, Peijnenburg WJGM, Hobbelen PHF, Koolhaas JE, Van Gestel CAM, Van Vliet PCJ, Hendriks AJ (2007) Metal accumulation in the earthworm Lumbricus rubellus. Model predictions compared to field data. Environ Pollut 146:428–436

    Article  CAS  Google Scholar 

  • Williams DE (1948) A rapid manometric method for determination of carbonate in soils. Soil Sci Soc Am Proc 13:127–129

    Article  Google Scholar 

  • Zhang JL, Liu JG, Li C, Nie YF, Jin YY (2008) Comparison of the fixation of heavy metals in raw material, clinker and mortar using a BCR sequential extraction procedure and NEN7341 test. Cem Concr Res 38:675–680

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the projects: CTM2009-07921 (Science and Innovation Ministry of Spain and FEDER), and P07-RNM-03303 (Andalusian Government and FEDER). The first author expresses her gratitude to the Innovation and Science Ministry of Spain, for a FPI fellowship and supported exchange visits in VU University Amsterdam. The Department of Ecological Science at VU University is thanked for the opportunity to work there and hospitality during my stay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verónica González.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Cite this article

González, V., Díez-Ortiz, M., Simón, M. et al. Assessing the impact of organic and inorganic amendments on the toxicity and bioavailability of a metal-contaminated soil to the earthworm Eisenia andrei . Environ Sci Pollut Res 20, 8162–8171 (2013). https://doi.org/10.1007/s11356-013-1773-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-1773-z

Keywords

Navigation