Skip to main content

Advertisement

Log in

In vitro Cr(VI) reduction by cell-free extracts of chromate-reducing bacteria isolated from tannery effluent irrigated soil

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Four efficient Cr(VI)-reducing bacterial strains were isolated from rhizospheric soil of plants irrigated with tannery effluent and investigated for in vitro Cr(VI) reduction. Based on 16S rRNA gene sequencing, the isolated strains SUCR44, SUCR140, SUCR186, and SUCR188 were identified as Bacillus sp. (JN674188), Microbacterium sp. (JN674183), Bacillus thuringiensis (JN674184), and Bacillus subtilis (JN674195), respectively. All four isolates could completely reduce Cr(VI) in culture media at 0.2 mM concentration within a period of 24–120 h; SUCR140 completely reduced Cr(VI) within 24 h. Assay with the permeabilized cells (treated with Triton X-100 and Tween 80) and cell-free assay demonstrated that the Cr(VI) reduction activity was mainly associated with the soluble fraction of cells. Considering the major amount of chromium being reduced within 24–48 h, these fractions could have been released extracellularly also during their growth. At the temperature optima of 28 °C and pH 7.0, the specific activity of Cr(VI) reduction was determined to be 0.32, 0.42, 0.34, and 0.28 μmol Cr(VI) min−1 mg−1 protein for isolates SUCR44, SUCR140, SUCR186, and SUCR188, respectively. Addition of 0.1 mM NADH enhanced the Cr(VI) reduction in the cell-free extracts of all four strains. The Cr(VI) reduction activity in cell-free extracts of all the isolates was stable in presence of different metal ions tested except Hg2+. Beside this, urea and thiourea also reduced the activity of chromate reduction to significant levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ackerley DF, Gonzalez CF, Park CH, Blake R II, Keyhan M, Matin A (2004) Chromate-reducing properties of soluble flavoproteins from Pseudomonas putida and Escherichia coli. Appl Environ Microbiol 70(2):873–882

    Article  CAS  Google Scholar 

  • Ackerley DF, Barak Y, Lynch SV, Curtin J, Matin A (2006) Effect of chromate stress on Escherichia coli K-12. J Bacteriol 188:3371–3381

    Article  CAS  Google Scholar 

  • Asmatullah Qureshi SN, Shakoori AR (1998) Hexavalent chromium induced congenital abnormalities in chick embryos. J Appl Toxicol 18(3):167–171

    Article  Google Scholar 

  • Awasthi A, Bharti N, Nair P, Singh R, Shukla AK, Gupta MM, Darokar MP, Kalra A (2011) Synergistic effect of Glomus mosseae and nitrogen fixing Bacillus subtilis strain Daz26 on artemisinin content in Artemisia annua L. Appl Soil Ecol 49:125–130

    Article  Google Scholar 

  • Bae WC, Lee HK, Choe YC, Jahng DK, Lee SH, Kim SJ, Lee JH, Jeong BC (2005) Purification and characterization of NADPH dependent Cr(VI) reductase from Escherichia coli ATCC 33456. J Microbiol 43:21–27

    CAS  Google Scholar 

  • Bagchi D, Stohs SJ, Downs BW, Bagchi M, Preuss HG (2002) Cytotoxicity and oxidative mechanism of different forms of chromium. Toxicology 180:5–22

    Article  CAS  Google Scholar 

  • Bopp LH, Chakrabarty AM, Ehrlich HL (1983) Chromate resistance plasmid in Pseudomonas fluorescens. J Bacteriol 155:1105–1109

    CAS  Google Scholar 

  • Camargo FAO, Bento FM, Okeke BC, Frankenberger WT (2003) Chromate reduction by chromium-resistant bacteria isolated from soils contaminated with dichromate. J Environ Qual 32:1228–1233

    Article  CAS  Google Scholar 

  • Campos J, Martinez-Pacheco M, Cervantes C (1995) Hexavalent-chromium reduction by a chromate-resistant Bacillus sp. strain. Ant van Leeuwen 68:203–208

    Article  CAS  Google Scholar 

  • Cervantes C, Campos-Garcia J, Gutierrez-Corona F, Loza-Tavera H, Torres-Guzman JC, Moreno-Sanchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347

    Article  CAS  Google Scholar 

  • Chachaty E, Saulnier P (2000) Isolating chromosomal DNA from bacteria. In: Rapley R (ed) The nucleic acid protocols handbook, vol 1. Humana, Totowa, pp 29–32

    Chapter  Google Scholar 

  • Chandra R, Bharagava RN, Kapley A, Purohit HJ (2010) Bacterial diversity, organic pollutants and their metabolites in two aeration lagoons of common effluent treatment plant (CFTP) during the degradation and detoxification of tannery wastewater. Biores Technol 102(3):2333–2341

    Article  Google Scholar 

  • Chardin B, Giudici-Orticoni MT, DeLuca G, Guigliarelli B, Bruschi M (2003) Hydrogenases in sulfate-reducing bacteria function as chromium reductase. Appl Microbiol Biotechnol 63(3):315–321

    Article  CAS  Google Scholar 

  • Cheung KH, Gu JD (2007) Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. Int Biodeterior Biodegrad 59:8–15

    Article  CAS  Google Scholar 

  • Codd R, Irwin JA, Lay PA (2003) Sialoglycoprotein and carbohydrate complexes in chromium toxicity. Curr Opi Chem Biol 17(2):213–219

    Article  Google Scholar 

  • Costa M, Klein CB (2006) Toxicity and carcinogenicity of chromium in humans. Crit Rev Toxicol 36:155–163

    Article  CAS  Google Scholar 

  • DeFlora S, Bagnasco M, Serra D, Zanacchi P (1990) Genotoxicity of chromium compounds: a review. Mut Res 238:99–172

    Article  CAS  Google Scholar 

  • Desai C, Jain K, Madamwar D (2008a) Evaluation of In vitro Cr(VI) reduction potential in cytosolic extracts of three indigenous Bacillus sp. Isolated from Cr(VI) polluted industrial landfill. Biores Technol 99:6059–6069

    Article  CAS  Google Scholar 

  • Desai C, Jain K, Madamwar D (2008b) Hexavalent chromate reductase activity in cytosolic of Pseudomonas sp.G1DM21 isolated from Cr(VI) contaminated industrial landfill. Proc Biochem 43:713–721

    Article  CAS  Google Scholar 

  • Dogan NM, Kantar C, Gulcan S, Dodge CJ, Yilmaz BC, Mazmanci MA (2011) Chromium (VI) bioremoval by Pseudomonas bacteria: Role of microbial exudates for natural attenuation and biotreatment of Cr(VI) contamination. Environ Sci Technol 45:2278–2285

    Article  CAS  Google Scholar 

  • Elangovan R, Abhipsa S, Rohit B, Ligy P, Chandraraj K (2006) Reduction of Cr(VI) by a Bacillus sp. Biotechnol Lett 28:247–252

    Article  CAS  Google Scholar 

  • Gonzalez CF, Ackerley DF, Lynch SV, Matin A (2005) ChrR, a soluble quinone reductase of Pseudomonas putida that defends against H2O2. J Biol Chem 280:2590–2595

    Google Scholar 

  • He M, Li X, Guo L, Miller S, Rensing C, Wang G (2010) Characterization and genomic analysis of chromate resistant and reducing Bacillus cereus strain SJ1. BMC Microbiol 10:221

    Google Scholar 

  • Ibrahim ASS, Elbadawi BY, El-Tayeb AM, Al-Salamah AA (2012) Hexavalent chromium reduction by novel chromate resistant alkaliphilic Bacillus sp. strain KSUCr9a. African. J Biotechnol 11(16):3832–3841

    CAS  Google Scholar 

  • Ishibashi Y, Cervantes C, Silver S (1990) Chromium reduction in Pseudomonas putida. Appl Environ Microbiol 56(7):2268–2270

    CAS  Google Scholar 

  • Junier P, Frutschi, Wigginton NS, Schofield EJ, Bargar JR, Latmani BR (2009) Metal reduction by spores of Desulfotomaculum reducen. Environ Microbiol 11(12):3007–3017

    Article  CAS  Google Scholar 

  • Karuppanapandian T, Sinha PB, Kamarul HA, Manoharan K (2009) Chromium induced accumulation of peroxide content, stimulation of antioxidative enzyme and lipid peroxidation in green gram (vigna radiata L cv wilczek) leaves. Afr J Biotechnol 8(3):475–479

    CAS  Google Scholar 

  • Krishna RK, Philip L (2005) Bioremediation of Cr(VI) in contaminated soils. J Hazard Mater 121:109–117

    Article  CAS  Google Scholar 

  • Kwak YH, Lee DS, Kim HB (2003) Vibrio harveyi nitroreductase is also a chromate reductase. Appl Environ Microbiol 69:4390–4395

    Article  CAS  Google Scholar 

  • Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42(3):421–428

    Article  CAS  Google Scholar 

  • Liu YG, Xu WH, Zeng GM, Li X, Gao H (2006) Cr(VI) reduction by Bacillus sp. isolated from chromium landfill. Pro Biochem 41(9):1981–1986

    Article  CAS  Google Scholar 

  • Lowry OH, Roseberough NJ, Lewis AF, Randall JR (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Mabbett AN, Macaskie LE (2001) A novel isolate of Desulfovibrio sp. with enhanced ability to reduce Cr (VI). Biotechnol Lett 23:683–687

    Article  CAS  Google Scholar 

  • Mabbett AN, Lloyd JR, Macaskie LE (2002) Effect of complexing agents on reduction of Cr(VI) by Desulfovibrio vulgaris ATCC 29579. Biotechnol Bioeng 79(4):389–397

    Article  CAS  Google Scholar 

  • Malik A (2004) Metal bioremediation by growing cells. Environ Int 30:261–278

    Article  CAS  Google Scholar 

  • Masood F, Malik A (2011) Hexavalent chromium reduction by Bacillus sp. strain FM1 isolated from heavy-metal contaminated soil. Bull Environ Contam Toxicol 86:114–119

    Article  CAS  Google Scholar 

  • McLean J, Beveridge TJ (2001) Chromate reduction by a pseudomonas isolated from a site contaminated with chromated copper arsenate. Appl Environ Microbiol 67:1076–1084

    Article  CAS  Google Scholar 

  • Megharaj M, Avudainayagam S, Naidu R (2003) Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Curr Microbiol 47:51–54

    Article  CAS  Google Scholar 

  • Oh YS, Choi SC (1997) Reduction of hexavalent chromium by Pseudomonas aeruginosa HP014. J Microbiol 35:25–29

    CAS  Google Scholar 

  • Ohtake H, Cervantes C, Silver S (1987) Decreased chromate uptake in Pseudomonas fluorescens carrying a chromate resistance plasmid. J Bacteriol 169:3853–3856

    CAS  Google Scholar 

  • Ohtake H, Fujii E, Toda K (1990) Reduction of toxic chromate in an industrial effluent by use of chromate reducing strain of Enterobactor cloacae. Environ Technol 11:663–668

    Article  CAS  Google Scholar 

  • Olajuyigbe FM, Ajele JO (2005) Production dynamics of extracellular protease from Bacillus species. Afr J Biotechnol 4(8):776–779

    CAS  Google Scholar 

  • Opperman DJ (2008a) The mechanism of chromate reduction by Thermus scotoductus SA-01. PhD thesis, University of the Free State

  • Opperman DJ, Piater LA, Heerden E (2008) A novel chromate reductase from Thermus scotoductus SA-01 related to old yellow enzyme. J Bacteriol 190(8):3076–3082

    Article  CAS  Google Scholar 

  • Pal A, Dutta S, Paul AK (2005) Reduction of hexavalent chromium by cell free extract of Bacillus sphaericus AND 303 isolated from serpentine soil. Curr Microbiol 51:327–330

    Article  CAS  Google Scholar 

  • Park CH, Keyhan M, Wielinga B, Fendorf S, Matin A (2000) Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase. Appl Environ Microbiol 66:1788–1795

    Article  CAS  Google Scholar 

  • Patra RC, Malik B, Beer M, Megharaj M, Naidu R (2010) Molecular characterization of chromium (VI) reducing potential in Gram positive bacteria isolated from contaminated sites. Soil Biol Biochem 42:1857–1863

    Article  CAS  Google Scholar 

  • Pattanapipitpaisal P, Brown NL, Macaskie LF (2001) Chromate reduction and 16S rRNA identification of bacteria isolated from a Cr(VI)-contaminated site. Appl Microbiol Biotechnol 57:257–261

    Article  CAS  Google Scholar 

  • Pei QH, Shahir S, Santhana AS (2009) Chromium (VI) resistance and removal by Acinetobacter haemolyticus. World J Microbiol Biotechnol 25:1085–1093

    Article  CAS  Google Scholar 

  • Priester JH, Olson SG, Webb SM, Neu MP, Hersman LE, Ve Holden PA (2006) Enhanced exopolymer production and chromium stabilization in Pseudomonas putida unsaturated biofilms. Appl Environ Microbiol 72(3):1988–1996

    Article  CAS  Google Scholar 

  • APHA (American Public Health Association); American Water Works Association (AWWA); Water Environment Federation (WEF) (1995) Standard Methods for the Examination of Water and Wastewater, 19th ed. Washington, DC

  • Puzon GJ, Petersen JN, Roberts AG, Kramer DM, Xun L (2002) A bacterial flavin reductase system reduces chromates (III)–NAD+ complex. Biochem Biophy Res 294(1):76–81

    Article  CAS  Google Scholar 

  • Puzon GJ, Roberts AG, Kramer DM, Xun L (2005) Formation of soluble organo-chromium(III) complexes after chromate reduction in the presence of cellular organics. Environ Sci Technol 39:2811–2817

    Article  CAS  Google Scholar 

  • Sau GB, Chatterjee S, Mukherjee SK (2010) Chromate reduction by cell free extract of Bacillus firmus KUCr1. Pol J Microbiol 59(3):185–190

    CAS  Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:735–753

    Article  Google Scholar 

  • Snow ET, Xu LS (1991) Chromium (III) bound to DNA templates promotes increased polymerase processivity and decreased fidelity during replication in vitro. Biochemistry 30(47):11238–11245

    Article  CAS  Google Scholar 

  • Stepanauskas R, Glenn TC, Jagoe CH, Tuckfield RC, Lindell AH, McArthur JV (2005) Elevated microbial tolerance to metals and antibiotics in metal-contaminated industrial environments. Environ Sci Technol 39(10):3671–3678

    Article  CAS  Google Scholar 

  • Suzuki T, Miyata N, Horitsu H, Kawai K, Takamizawa K, Tai Y, Okazaki M (1992) NAD(P)H-dependent chromium(VI) reductase of Pseudomonas ambigua G-1: a Cr(V) intermediate is formed during the reduction of Cr(VI) to Cr(III). J Bacteriol 174:5340–5345

    CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  Google Scholar 

  • Vincent JB (2000) Elucidating a biological role for chromium at a molecular level. Acc Chem Res 33(7):503–510

    Article  CAS  Google Scholar 

  • Viti C, Pace A, Giovannetti L (2003) Characterization of Cr(VI) resistant bacteria isolated from chromium contaminated soil by tannery activity. Curr Microbiol 46:1–5

    Article  CAS  Google Scholar 

  • Wang P, Mori T, Toda K, Ohtake H (1990) Membrane-associated chromate reductase activity from Enterobacter cloacae. J Bacteriol 172:1670–1672

    CAS  Google Scholar 

  • Wise SS, Elmore LW, Holt SE, Little JE, Anto nucci PG, Bryant BH, Pierce WSJ (2004) Telomerase mediated lifespan extension of human bronchial cells does not affect hexavalent chromium induced cytotoxicity or genotoxicity. Mol Cell Biochem 255(1–2):103–112

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Director, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India, for providing necessary facilities and encouragement during the course of investigation, Dr HP Singh for his help in statistical analysis, Sukhmal Chand and Kundan Wasnik for soil analysis, and the Indian Council of Medical Research (ICMR), New Delhi, India, for providing financial support to SKS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Kalra.

Additional information

Responsible editor: Robert Duran

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soni, S.K., Singh, R., Awasthi, A. et al. In vitro Cr(VI) reduction by cell-free extracts of chromate-reducing bacteria isolated from tannery effluent irrigated soil. Environ Sci Pollut Res 20, 1661–1674 (2013). https://doi.org/10.1007/s11356-012-1178-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-1178-4

Keywords

Navigation