Skip to main content
Log in

Nopalea cochenillifera, a potential chromium (VI) hyperaccumulator plant

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Hexavalant chromium [Cr(VI)] tolerance and accumulation in in vitro grown Nopalea cochenillifera Salm. Dyck. plants was investigated. A micropropagation protocol was establish for a rapid multiplication of N. cochenillifera and [Cr(VI)] tolerance and accumulation was studied in in vitro grown cultures. Cr concentration was estimated by atomic absorption spectroscopy in roots and shoots to confirm plant’s hyperaccumulation capacity. Plants showed tolerance up to 100 μM K2Cr2O7 without any significant changes in root growth after 16 days treatment; whereas, chlorophyll content in plants treated with 1 and 10 μM K2Cr2O7 were not so different than the control plant. The levels of lipid peroxidation and protein oxidation increased significantly (p < 0.01) with increasing concentration of chromium. Exposures of N. cochenillifera to lower concentrations of K2Cr2O7 (≤10 μM) induced catalase (CAT) and superoxide dismutase (SOD) significantly (p < 0.001) but higher concentrations of K2Cr2O7 (>100 μM) inhibited the activities of CAT and SOD. Roots accumulated a maximum of 25,263.396 ± 1,722.672 mg Cr Kg−1 dry weight (DW); while the highest concentration of Cr in N. cochenillifera shoots was 705.714 ± 32.324 mg Cr Kg−1 DW. N. cochenillifera could be a prospective hyperaccumulator plant of Cr(VI) and a promising candidate for phytoremediation purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Achary VMM, Jena S, Panda KK, Panda BB (2008) Aluminium induced oxidative stress and DNA damage in root cells of Allium cepa L. Ecotoxicol Environ Saf 70:300–310

    Article  CAS  Google Scholar 

  • Agarwal A, Kumar V, Pandey BD (2006) Remediation options for the treatment of electroplating and leather tanning effluent containing chromium—a review. Miner Process Extract Metall Rev 27:99–130

    Article  Google Scholar 

  • Aldrich MV, Gardea-Torresdey JL, Peralta-Videa JR, Parsons JG (2003) Uptake and reduction of Cr(VI) to Cr(III) by Mesquite (Prosopis spp.): chromate–plant interaction in hydroponics and solid media studied using XAS. Environ Sci Technol 37:1859–1864

    Article  CAS  Google Scholar 

  • Brasil JN, Jereissati ES, Santos MRA, Campos FAP (2005) In vitro micropropagation of Nopalea cochenillifera (Cactaceae). J Appl Bot Food Qual 79:160–162

    CAS  Google Scholar 

  • Brunetti G, Farrag K, Rovira PS, Nigro F, Senesi N (2011) Greenhouse and field studies on Cr, Cu, Pb and Zn phytoextraction by Brassica napus from contaminated soils in the Apulia region, Southern Italy. Geoderma 160:517–523

    Article  CAS  Google Scholar 

  • Buendía-González L, Orozco-Villafuerte J, Cruz-Sosa F, Barrera-Díaz CE, Vernon-Carter EJ (2010) Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant. Biores Technol 101:5862–5867

    Article  Google Scholar 

  • Clabeaux BL, Navarro DAG, Aga DS, Bisson MA (2011) Cd tolerance and accumulation in the aquatic macrophyte, Chara australis: potential use for charophytes in phytoremediation. Environ Sci Technol 45:5332–5338

    Article  CAS  Google Scholar 

  • De la Rosa G, Peralta-Videa JR, Cruz-Jiminez G, Duarte-Gardea M, Martinez A, Cano-Aguilera I, Sharma NC, Sahi SV, Gardea-Torresdey JL (2007) The role of EDTA on lead uptake and translocation by tumbleweed (Salsola kali L.). Environ Toxicol Chem 26:1033–1039

    Article  Google Scholar 

  • Desai C, Jain K, Madamwar D (2008) Hexavalent chromate reductase activity in cytosolic fractions of Pseudomonas sp. G1DM21 isolated from Cr(VI) contaminated industrial landfill. Process Biochem 43:713–721

    Article  CAS  Google Scholar 

  • Dong J, Wu F, Huang R, Zang G (2007) A chromium-tolerant plant growing in Cr-contaminated land. Int J Phytoremediat 9:167–179

    Article  CAS  Google Scholar 

  • Doran PM (2009) Application of plant tissue cultures in phytoremediation research: incentives and limitations. Biotechnol Bioeng 103:60–76

    Article  CAS  Google Scholar 

  • Figueroa JAL, Afton S, Wrobel K, Wrobelac K, Caruso JA (2007) Analysis of phytochelatins in nopal (Opuntia ficus): a metallomics approach in the soil–plant system. J Anal At Spectrom 22:897–904

    Article  Google Scholar 

  • Gardea-Torresdey JL, Peralta-Videa JR, Montes M, de la Rosa G, Corral-Diaz B (2004) Bioaccumulation of cadmium, chromium and copper by Convolvulus arvensis L.: impact on plant growth and uptake of nutritional elements. Biores Technol 92:229–235

    Article  CAS  Google Scholar 

  • Golan-Goldhirsh A, Barazani O, Nepovim A, Soudek P, Smrcek S, Dufkova L, Krenkova S, Yrjala K, Schröder P, Vanek T (2004) Plant response to heavy metals and organic pollutants in cell culture and at whole plant level. J Soils Sediments 4:130–140

    Article  Google Scholar 

  • Haque N, Peralta-Videa JR, Jones GL, Gill TE, Gardea-Torresdeya JL (2008) Screening the phytoremediation potential of desert broom (Baccharis sarothroides Gray) growing on mine tailings in Arizona, USA. Environ Pollut 153:362–368

    Article  CAS  Google Scholar 

  • Haque N, Peralta-Videa JR, Gardea-Torresdey JL (2009) Differential effect of metals/metalloids on the growth and element uptake of mesquite plants obtained from plants grown at a copper mine tailing and commercial seeds. Biores Technol 100:6177–6182

    Article  CAS  Google Scholar 

  • Liu J, Duan C, Zhang X, Zhu Y, Lu X (2011) Potential of Leersia hexandra Swartz for phytoextraction of Cr from soil. J Hazard Mater 188:85–91

    Article  CAS  Google Scholar 

  • López ML, Peralta-Videa JR, Benitez T, Duarte-Gardea M, Gardea-Torresdey JL (2007) Effects of lead, EDTA, and IAA on nutrient uptake by alfalfa plants. J Plant Nutr 30:1247–1261

    Article  Google Scholar 

  • Mongkhonsin B, Nakbanpote W, Nakai I, Hokura A, Jearanaikoon N (2011) Distribution and speciation of chromium accumulated in Gynura pseudochina (L.) DC. Env Exp Bot 74:56–64

    Article  CAS  Google Scholar 

  • Montes-Holguin MO, Peralta-Videa JR, Meitzner G, Martinez-Martinez A, De la Rosa G, Castillo-Michel HA, Gardea-Torresday JL (2006) Biochemical and spectroscopic studies of the response of Convolvulus arvensis L. to Cr(III) and Cr(VI) stress. Environ Toxicol Chem 25:220–226

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Panda SK, Choudhary S (2005) Chromium stress in plants. Brazil J Plant Physiol 17:95–102

    CAS  Google Scholar 

  • Panda SK, Patra HK (2000) Does Cr(III) produces oxidative damage in excised wheat leaves. J Plant Biol 27(2):105–110

    Google Scholar 

  • Panda SK, Chaudhury I, Khan MH (2003) Heavy metals induce lipid peroxidation and affects antioxidants in wheat leaves. Biol Plant 46:289–294

    Article  CAS  Google Scholar 

  • Pandey S, Singh MP, Singh RP (2010) Effect of heavy metals (Pb & Cr) on growth and chlorophyll content of Dhatura metel L. Ind J Sci Res 1:51–54

    CAS  Google Scholar 

  • Rodriguez E, Azevedo R, Fernandes P, Santos C (2011) Cr(VI) induces DNA damage, cell cycle arrest and polyploidization: a flow cytometric and comet assay study in Pisum sativum. Chem Res Toxicol 24:1040–1047

    Article  CAS  Google Scholar 

  • Shams KM, Tichy G, Fische A, Sager M, Peer T, Bashar A, Filip K (2010) Aspects of phytoremediation for chromium contaminated sites using common plants Urtica dioica, Brassica napus and Zea mays. Plant Soil 328:175–189

    Article  CAS  Google Scholar 

  • Shukla OP, Juwarkar AA, Singh SK, Khan S, Rai UN (2011) Growth responses and metal accumulation capabilities of woody plants during the phytoremediation of tannery sludge. Waste Manage 31:115–123

    Article  CAS  Google Scholar 

  • Sinha S, Saxena R, Singh S (2005) Chromium induced lipid peroxidation in the plants of Pistia stratiotes L.: role of antioxidants and antioxidant enzymes. Chemosphere 58:595–604

    Article  CAS  Google Scholar 

  • Sung M, Lee CY, Lee SZ (2011) Combined mild soil washing and compost-assisted phytoremediation in treatment of silt loams contaminated with copper, nickel, and chromium. J Hazard Mater 190:744–754

    Article  CAS  Google Scholar 

  • Wani R, Kodam KM, Gawai KR, Dhakephalkar PK (2007) Chromate reduction by Burkholderia cepacia MCMB-821, isolated from the pristine habitat of alkaline water crater lake. Appl Microbiol Biotechnol 75:627–632

    Article  CAS  Google Scholar 

  • Yu X-Z, Hu J-D (2007) Accumulation and distribution of trivalent chromium and effects on hybrid willow (Salix matsudana Koidz x alba L.) metabolism. Arch Environ Contam Toxicol 52:503–511

    Article  CAS  Google Scholar 

  • Yu XZ, Gu JD, Xing LQ (2008) Differences in uptake and translocation of hexavalent and trivalent chromium by two species of willows. Ecotoxicology 17:747–755

    Article  CAS  Google Scholar 

  • Zhang XH, Luo YP, Huang HT, Liu J, Chen J (2005) Electroplating factory heavy metal pollution in soil and characteristics of plant accumulation. J Guilin Univ Technol 25:289–292

    CAS  Google Scholar 

  • Zhao Y, Jose R, Peralta-Videa, Lopez-Moreno ML, Saupe GB, Gardea-Torresdey JL (2011) Use of plasma-based spectroscopy and infrared microspectroscopy techniques to determine the uptake and effects of chromium(III) and chromium(VI) on Parkinsonia aculeate. Int J Phytorem 13:17–33

    Article  Google Scholar 

Download references

Acknowledgments

VSA is thankful to Department of Biotechnology, Shivaji University, Kolhapur for Departmental Research Fellowship and VAB wishes to thank Indian National Science Academy, New Delhi for Senior Scientist position.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishwas A. Bapat.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adki, V.S., Jadhav, J.P. & Bapat, V.A. Nopalea cochenillifera, a potential chromium (VI) hyperaccumulator plant. Environ Sci Pollut Res 20, 1173–1180 (2013). https://doi.org/10.1007/s11356-012-1125-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-1125-4

Keywords

Navigation