Skip to main content
Log in

Pentachlorophenol dechlorination and simultaneous Cr6+ reduction by Pseudomonas putida SKG-1 MTCC (10510): characterization of PCP dechlorination products, bacterial structure, and functional groups

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

It is the first report in which a novel psychrotrophic Pseudomonas putida SKG-1 strain was evaluated for simultaneous bioremediation of pentachlorophenol and Cr6+ under various cultural and nutritional conditions. Pentachlorophenol (PCP) dechlorination products, bacterial structure, and functional groups were characterized by gas chromatography and mass spectrometry (GC–MS), scanning electron microscope and energy dispersive X-ray spectroscopy (SEM–EDS), and Fourier-transform infrared (FTIR) techniques. The strain was extremely tolerant to excessively higher individual concentration of PCP (1,400 mg l−1) and Cr6+ (4,300 mg l−1). Increasing concentration of PCP and Cr6+ exerted inhibitory effect on bacterial growth and toxicants’ removal. The strain exhibited growth, and concomitantly remediated both the pollutants simultaneously over a broad pH (7.0–9.0) and temperature (28–32 °C) range; maximum growth, PCP dechlorination (87.5 %), and Cr6+ removal (80.0 %) occurred at optimum pH 8.0 and 30 °C (from initial PCP 100 mg l−1 and Cr6+ 500 mg l−1) under shaking (150 rpm) within 72 h incubation. Optimization of agitation (125 rpm) and aeration (0.4 vvm) in bioreactor further enhanced PCP dechlorination by ~10 % and Cr6+ removal by 2 %. A direct correlation existed between growth and bioremediation of both the toxicants. Among other heavy metals, mercury exerted maximum and cobalt minimum inhibitory effect on PCP dechlorination and Cr6+ removal. Chromate reductase activity was mainly associated with the supernatant and cytosolic fraction of bacterial cells. GC–MS analysis revealed the formation of tetrachloro-p-hydroquinone, 2,4,6-trichlorophenol, and 2,6-dichlorophenol as PCP dechlorination products. FTIR spectrometry indicated likely involvement of carbonyl and amide groups in Cr3+ adsorption, and SEM–EDS showed the presence of chromium on P. putida surface. Thus, our promising isolate can be ecofriendly employed for biotreatment of various industrial wastes contaminated with high PCP and Cr6+ concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ackerley DF, Barak Y, Lynch SV, Curtin J, Matin A (2006) Effect of chromate stress on Escherichia coli K-12. J Bacteriol 188:3371–3381. doi:10.1128/JB.188.9.3371-3381

    Article  CAS  Google Scholar 

  • Alves de Lima e Silva A, Pereira MP, Geraldo Silva Filho R, Hofer E (2007) Utilization of phenol in the presence of heavy metals by metal-tolerant nonfermentative gram-negative bacteria isolated from wastewater. Microbiologia 49(3-4):68–73

    Google Scholar 

  • APHA (1998) Standard methods for the examination of water and wastewaters, 20th ed., Washington, DC

  • Bergmann JG, Sanik J (1957) Determination of trace amounts of chlorine in naphtha. Anal Chem 29:241–243. doi:10.1021/ac60122a018

    Article  CAS  Google Scholar 

  • Beveridge TJ (1988) The bacterial surface: general considerations towards design and function. Can J Microbiol 34:363–372. doi:10.1139/m88-067

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of micrograms quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  Google Scholar 

  • Camargo FAO, Okeke BC, Bento FM, Frankenberger WT (2003) In vitro reduction of hexavalent chromium by a cell-free extract of Bacillus sp. ES 29 stimulated by Cu2+. Appl Microbiol Biotechnol 62:569–573. doi:10.1007/s00253-003-1291-x

    Article  CAS  Google Scholar 

  • Chhikara S, Hooda A, Rana L, Dhankhar R (2010) Chromium (VI) biosorption by immobilized Aspergillus niger in continuous flow system with special reference to FTIR analysis. J Environ Biol 31(5):561–566

    CAS  Google Scholar 

  • Chirwa EMN, Wang YT (2000) Simultaneous chromium (VI) reduction and phenol degradation in an anaerobic consortium of bacteria. Water Res 33:2376–2384. doi:10.1016/S0043-1354(99)00363-2

    Article  Google Scholar 

  • Chirwa EMN, Wang YT (2005) Modeling hexavalent chromium reduction and phenol degradation in a coculture biofilm reactor. ASCE J Environ Eng 131:1495–1506. doi:10.1061/(ASCE)0733-9372

    Article  Google Scholar 

  • Clark DP (1994) Chromate reductase activity of Enterobacter aerogenes is induced by nitrite. FEMS Microbiol Lett 122:233–238

    Article  CAS  Google Scholar 

  • Congeevaram S, Dhanarani S, Park J, Dexilin M, Thamaraiselvi K (2007) Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. J Hazard Mat 146:270–277

    Article  CAS  Google Scholar 

  • Copley SD (2000) Evolution of metabolic pathway for degradation of a toxic xenobiotic: the patchwork approach. Trends Biochem Sci 25:261–265. doi:10.1016/S0968-0004(00)01562-0

    Article  CAS  Google Scholar 

  • Das AP, Mishra S (2010) Biodegradation of the metallic carcinogen hexavalent chromium Cr (VI) by an indigenously isolated bacterial strain. J Carcinogen 9:6. doi:10.4103/1477-3163.63584

    Article  Google Scholar 

  • Deiana S, Premoli A, Senette C (2007) Reduction of Cr (VI) by caffeic acid. Chemosphere 67:1919–1926. doi:10.1016/j.chemosphere.2006.12.003

    Article  CAS  Google Scholar 

  • Desai C, Jain K, Madamwar D (2008) Hexavalent chromate reductase activity in cytosolic fractions of Pseudomonas sp. G1DM21 isolated from Cr (VI) contaminated industrial landfill. Process Biochem 43:713–721. doi:10.1016/j.procbio.2008.02.015

    Article  CAS  Google Scholar 

  • Dhal B, Thatoi H, Das N, Pandey BD (2010) Reduction of hexavalent chromium by Bacillus sp. isolated from chromite mine soils and characterization of reduced product. J Chem Technol Biotechnol 85(11):1471–1479. doi:10.1002/jctb.2451

    CAS  Google Scholar 

  • Faisal M, Hasnain S (2006) Detoxification of Cr (VI) by Bacillus cereus S-6. Res J Microbiol 1:45–50. doi:10.3923/jm.2006.45.50

    Article  CAS  Google Scholar 

  • Farrell SO, Ranallo RT (2000) Experiments in biochemistry: a hands-on approach. Saunders, Orlando

    Google Scholar 

  • Garg SK, Tripathi M (2011) Strategies for decolorization and detoxification of pulp and paper mill effluent. Rev Environ Contam Toxicol 212:213–236. doi:10.1007/978-1-4419-8453-1_4

    Google Scholar 

  • Garg SK, Tripathi M, Kumar SK, Singh SK, Singh SK (2011) Microbial dechlorination of chloroorganics and simultaneous decolorization of pulp-paper mill effluent by Pseudomonas putida MTCC 10510 augmentation. Environ Monit Assess. doi:10.1007/s10661-011-2359-1

  • Garg SK, Tripathi M, Srinath T (2012) Strategies for chromium bioremediation from tannery effluent. Rev Environ Contam Toxicol 217:75–140. doi:10.1007/978-1-4614-2329-4_2

    Article  CAS  Google Scholar 

  • Gu Y, Korus RA (1995) Kinetics of pentachlorophenol degradation by Flavobacterium species. Appl Biochem Biotechnol 43:374–378. doi:10.1007/BF00172842

    CAS  Google Scholar 

  • Homada MF, Haddad A, Abd-El-Bary MF (1987) Treatment of phenolics wastes in an aerated submerged fixed-film (ASFF) bioreactor. J Biotechnol 5:279–292. doi:10.1016/0168-1656(87)90025-3

    Article  Google Scholar 

  • Horitsu H, Futo S, Miyazawa Y, Ogai S, Kawai K (1987) Enzymatic reduction of hexavalent chromium by hexavalent chromium tolerant Pseudomonas ambigua G-1. J Agri Biol Chem 51:2417–2420

    Article  CAS  Google Scholar 

  • Ilias M, Rafiqullah IM, Debnath BC, Mannan KSB, Hoq MM (2011) Isolation and characterization of chromium (VI)-reducing bacteria from tannery effluents. Indian J Microbiol 51(1):76–81. doi:10.1007/s12088-011-0095-4

    Article  CAS  Google Scholar 

  • Ito M, Ohnishi Y (1982) Escherichia coli mutants which are resistant to uncouplers of oxidative phosphorylation. J Microbiol Immunol 26(11):1079–1084. doi:10.1099/00221287-133-10-2759

    CAS  Google Scholar 

  • Kang SY, Bremer PJ, Kim KW, McQuillan AJ (2006) Monitoring metal ion binding in single-layer Pseudomonas aeruginosa biofilms using ATR-IR spectroscopy. Langmuir 22:286–291

    Article  CAS  Google Scholar 

  • Karn SK, Chakrabarti SK, Reddy MS (2010) Degradation of pentachlorophenol by Kocuria sp. CL2 isolated from secondary sludge of pulp and paper mill. Biodegradation. doi:10.1007/s10532-010-9376-6

  • Kennes C, Wu WM, Bhatnagar L, Zeikus JG (1996) Anaerobic dechlorination and mineralization of pentachlorophenol and 2,4,6-trichlorophenol by methanogenic pentachlorophenol degrading granules. Appl Microbiol Biotechnol 44:801–806

    Article  CAS  Google Scholar 

  • Leusch A, Holan ZR, Volesky B (1995) Biosorption of heavy metals (Cd, Cu, Ni, Pb, Zn) by chemically reinforced biomass of marine algae. J Chem Technol Biotechnol 62:279–288. doi:10.1002/jctb.280620311

    Article  CAS  Google Scholar 

  • Li B, Pan D, Zheng J, Cheng Y, Ma X, Huang F, Lin Z (2008) Microscopic investigations of the Cr (VI) uptake mechanism of living Ochrobactrum anthropi. Langmuir 24:9630–9635

    Article  CAS  Google Scholar 

  • Liu YG, Xu WH, Zeng GM, Li X, Gao H (2006) Cr (VI) reduction by Bacillus sp. isolated from chromium landfill. Process Biochem 41:1981–1986. doi:10.1016/j.procbio.2006.04.020

    Article  CAS  Google Scholar 

  • Luli GW, Talnagi JW, Strohl WR, Pfister RM (1983) Hexavalent chromium resistant bacteria isolated from river sediments. Appl Environ Microbiol 46:846–854

    CAS  Google Scholar 

  • Mance G (1987) Pollution threat of heavy metals in aquatic environments. Elsevier, New York, pp 31–60, 134-135

    Book  Google Scholar 

  • Masood F, Malik A (2011) Hexavalent chromium reduction by Bacillus sp. strain FM1 isolated from heavy-metal contaminated soil. Bull Environ Contam Toxicol 86:114–119. doi:10.1007/s00128-010-0181-z

    Article  CAS  Google Scholar 

  • Mathew A, Thanga V, Salom G, Reshma JK (2010) Simultaneous phenol degradation and chromium (VI) reduction by bacterial isolates. Res J Biotechnol 5:46–49

    Google Scholar 

  • McLean J, Beveridge TJ (2001) Chromate reduction by a Pseudomonad isolated from a site contaminated with chromated copper arsenate. Appl Environ Microbiol 67:1076–1084

    Article  CAS  Google Scholar 

  • Megharaj M, Avudainayagam S, Naidu R (2003) Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Curr Microbiol 47:51–54. doi:10.1007/s00284-002-3889-0

    Article  CAS  Google Scholar 

  • Michel C, Brugna M, Aubert C, Bernadac A, Bruschi M (2001) Enzymatic reduction of chromate: comparative studies using sulfate-reducing bacteria. Appl Microbiol Biotechnol 55:95–100

    Article  CAS  Google Scholar 

  • Mukherjee AB (1998) Chromium in the environment of Finland. Sci Total Environ 217:9–19. doi:10.1016/S0048-9697(98)00163-6

    Article  CAS  Google Scholar 

  • Naik UC, Srivastava S, Thakur IS (2012) Isolation and characterization of Bacillus cereus IST105 from electroplating effluent for detoxification of hexavalent chromium. Environ Sci Pollut Res. doi:10.1007/s11356-012-0811-6

  • Nath K, Singh D, Shyam S, Sharma YK (2009) Phytotoxic effects of chromium and tannery effluent on growth and metabolism of Phaseolus mungo Roxb. J Environ Biol 30:227–234

    CAS  Google Scholar 

  • Nriagu JO, Pacyna JM (1989) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134–139. doi:10.1038/333134a0

    Article  Google Scholar 

  • Orser CS, Lange CC (1994) Molecular analysis of pentachlorophenol degradation. Biodegradation 5(3–4):277–288

    Article  CAS  Google Scholar 

  • Pal A, Dutta S, Paul AK (2005) Reduction of hexavalent chromium by cell-free extract of Bacillus sphaericus AND 303 isolated from serpentine soil. Curr Microbiol 66:327–330. doi:10.1007/s00284-005-0048-4

    Article  Google Scholar 

  • Polti MA, Amoroso MJ, Abate CM (2011) Intracellular chromium accumulation by Streptomyces sp. MC1. Water Air Soil Pollut 214:49–57. doi:10.1007/s11270-010-0401-5

    Article  CAS  Google Scholar 

  • Premlatha A, Rajkumar GS (1994) Pentachlorophenol degradation by Pseudomonas aeruginosa. World J Microbiol Biotechnol 10:334–337

    Article  Google Scholar 

  • Rida B, Yrjala K, Hasnain S (2012) Hexavalent chromium reduction by bacteria from tannery effluent. J Microbiol Biotechnol 22(4):547–554

    Article  Google Scholar 

  • Sharma A, Thakur IS (2008) Characterization of pentachlorophenol degrading bacterial consortium from chemostat. Bull Environ Contam Toxicol 81:12–18. doi:10.1007/s00128-008-9437-2

    Article  CAS  Google Scholar 

  • Sharma A, Thakur IS, Dureja P (2009) Enrichment, isolation and characterization of pentachlorophenol degrading bacterium Acinetobacter sp. ISTPCP-3 from effluent discharge site. Biodegradation 20:643–650. doi:10.1007/s10532-009-9251-5

    Article  CAS  Google Scholar 

  • Shen H, Wang YT (1993) Characterization of enzymatic reduction of hexavalent chromium by Escherichia coli ATCC 33456. Appl Environ Microbiol 59:3771–3777

    CAS  Google Scholar 

  • Shen H, Wang YT (1995) Modeling simultaneous hexavalent chromium reduction and phenol degradation by a defined coculture of bacteria. Biotechnol Bioeng 48:606–616. doi:10.1002/bit.260480608

    Article  CAS  Google Scholar 

  • Singh S, Chandra R, Patel DK, Rai V (2007) Isolation and characterization of novel Serratia marcescens (AY927692) for pentachlorophenol degradation from pulp and paper mill waste. World J Microbiol Biotechnol 23:1747–1754. doi:10.1007/s11274-007-9424-5

    Article  CAS  Google Scholar 

  • Singh S, Singh BB, Chandra R, Patel DK, Rai V (2009) Synergistic biodegradation of pentachlorophenol by Bacillus cereus (DQ002384), Serratia marcescens (AY927692) and Serratia marcescens (DQ002385). World J Microbiol Biotechnol 25:1821–1828. doi:10.1007/s11274-009-0083-6

    Article  CAS  Google Scholar 

  • Singh SK, Singh SK, Tripathi VR, Khare SK, Garg SK (2011) A novel psychrotrophic, solvent tolerant Pseudomonas putida SKG-1 and solvent stability of its psychro-thermoalkalistable protease. Process Biochem 46:1430–1435. doi:10.1016/j.procbio.2011.03.012

    Article  CAS  Google Scholar 

  • Song H, Liu Y, Xu W, Zeng G, Aibibu N, Xu L, Chen B (2009) Simultaneous Cr (VI) reduction and phenol degradation in pure cultures of Pseudomonas aeruginosa CCTCC AB91095. Biores Technol 100:5079–5084. doi:10.1016/j.biortech.2009.05.060

    Article  CAS  Google Scholar 

  • Srinath T, Khare S, Ramteke PW (2001) Isolation of hexavalent chromium-reducing Cr-tolerant facultative anaerobes from tannery effluent. J Gen Appl Microbiol 47:307–312

    Article  CAS  Google Scholar 

  • Srinath T, Garg SK, Ramteke PW (2002) Cr (VI) accumulation by Bacillus circulans: effect of various growth conditions. Indian J Microbiol 42:141–146

    Google Scholar 

  • Srivastava S, Thakur IS (2012) Biosorption and biotransformation of chromium by Serratia sp. isolated from tannery effluent. Environ Technol 33(1):113–122. doi:10.1080/09593330.2011.551842

    Article  CAS  Google Scholar 

  • Srivastava S, Ahmad AH, Thakur IS (2007) Removal of chromium and pentachlorophenol from tannery effluent. Biores Technol 98:1128–1132. doi:10.1016/j.biortech.2006.04.011

    Article  CAS  Google Scholar 

  • Stanier RY, Doudoroff M, Adelberg EA (1972) Microbial growth. In: General microbiology, 3rd edn. Macmillon Press: London. pp 310–311

  • Suegara J, Lee BD, Espino MP (2005) Photodegradation of pentachlorophenol and its degradation pathways predicted using density functional theory. Chemosphere 61:341–346. doi:10.1016/j.chemosphere.2005.02.090

    Article  CAS  Google Scholar 

  • Thakur IS, Srivastava S (2011) Biodegradation and bioconversion of chromium and pentachlorophenol in tannery effluent by microorganisms. Int J Technol 3:224–233

    Google Scholar 

  • Tripathi M, Garg SK (2010) Studies on selection of efficient bacterial strain simultaneously tolerant to hexavalent chromium and pentachlorophenol isolated from treated tannery effluent. Res J Microbiol 5:707–716. doi:10.3923/jm.2010.707.716

    Article  CAS  Google Scholar 

  • Tripathi M, Vikram S, Jain RK, Garg SK (2011) Isolation and growth characteristics of chromium (VI) and pentachlorophenol tolerant bacterial isolate from treated tannery effluent for its possible use in simultaneous bioremediation. Indian J Microbiol 51:61–69. doi:10.1007/s12088-011-0089-2

    Article  CAS  Google Scholar 

  • Tziotzios G, Dermou E, Eftychia P, Dorothea V, Dimitris V (2008) Simultaneous phenol removal and biological reduction of hexavalent chromium in a packed-bed reactor. J Chem Technol Biotechnol 83:829–835. doi:10.1002/jctb.1876

    Article  CAS  Google Scholar 

  • Volesky B (1990) Biosorption and biosorbents. In: Volesky B (ed) Biosorption of heavy metals. CRC, Boca Raton

    Google Scholar 

  • Xu WH, Liu YG, Zeng GM, Li X, Song HX, Peng QQ (2009) Characterization of Cr (VI) resistance and reduction by Pseudomonas aeruginosa. Trans Nonf Met Soc China 19:1336–1341. doi:10.1016/S1003-6326(08)60446-X

    Article  CAS  Google Scholar 

  • Yang CF, Lee CM, Wang CC (2006) Isolation and physiological characterization of the pentachlorophenol degrading bacterium Sphingomonas chlorophenolicum. Chemosphere 69:709–714. doi:10.1016/j.chemosphere.2005.05.012

    Article  Google Scholar 

Download references

Acknowledgments

The authors express sincere thanks to Sophisticated Advanced Instrumentation Facilities, Indian Institute of Technology, Bombay, India for GC–MS, FTIR and SEM–EDS facilities. Facilities provided by Government of Uttar Pradesh under Centre of Excellence and Government of India’s DST-FIST schemes are duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyendra Kumar Garg.

Additional information

Responsible editor: Robert Duran

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garg, S.K., Tripathi, M., Singh, S.K. et al. Pentachlorophenol dechlorination and simultaneous Cr6+ reduction by Pseudomonas putida SKG-1 MTCC (10510): characterization of PCP dechlorination products, bacterial structure, and functional groups. Environ Sci Pollut Res 20, 2288–2304 (2013). https://doi.org/10.1007/s11356-012-1101-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-1101-z

Keywords

Navigation