Skip to main content
Log in

Molecular cloning and expression of novel metallothionein (MT) gene in the polychaete Perinereis nuntia exposed to metals

  • 15th International Symposium on Toxicity Assessment
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

To report a novel metallothionein (MT) gene and evaluate its potency as a biomarker, we clone this MT gene and measured the expression levels in the metal-exposed polychaete Perinereis nuntia. Accumulated metal contents and metallothionein-like proteins (MTLPs), which have been recognized as potential biomarkers, were compared with the relative mRNA expressions of the MT gene of P. nuntia (Pn-MT). In addition, the metal-binding affinity was estimated by recombinant Pn-MT protein. Pn-MT having high cysteine residues with three metal response elements in the promoter region closely clusters with those of other invertebrates. The accumulation patterns of metals were dependent on the exposure times in lead (Pb), cadmium (Cd), and copper (Cu) exposure. Particularly, both MTLP levels and relative mRNA expressions of MT were increased with accumulated metal contents and exposure time in P. nuntia exposed to Pb and Cd. There was no significant modulation of the Pn-MT gene in polychaetes exposed to Zn and As. However, the metal-binding ability of the recombinant Pn-MT protein provides a clear evidence for a high affinity of MT to several metal elements. These results suggest that Pn-MT would play an important role in the detoxification and/or sequestration of specific metals (e.g., Pb and Cd) in P. nuntia and have potential as a molecular biomarker in the monitoring of the marine environment using a polychaete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amiard JC, Journel R, Bacheley H (2008) Influence of field and experimental exposure of mussels (Mytilus sp.) to nickel and vanadium on metallothionein concentrations. Comp Biochem Physiol 147C:378–385

    CAS  Google Scholar 

  • Asselman J, Claholt SP, Smith Z, Smagghe G, Janssen CR, Colbourne JK, Shaw JR, De Schamphelaere KAC (2012) Functional characterization of four metallothionein genes in Daphnia pulex exposed to environmental stressors. Aquat Tox 110–111:54–65

    Article  Google Scholar 

  • Bernds D, Wübben D, Zauke G (1998) Bioaccumulation of trace metals in polychaetes from the German Wadden Sea: evaluation and verification of toxicokinetic models. Chemosphere 37:2573–2587

    Article  CAS  Google Scholar 

  • Bigot A, Doyen P, Vasseur P, Rodius F (2009) Metallothionein coding sequence identification and seasonal mRNA expression of detoxification genes in the bivalve Corbicula fluminea. Ecotox Environ Saf 72:382–387

    Article  CAS  Google Scholar 

  • Bonnard M, Roméo M, Amiard-Triquet C (2009) Effects of copper on the burrowing behavior of estuarine and coastal invertebrates, the polychaete Nereis diversicolor and the bivalve Scrobicularia plana. Hum Ecol Risk Assess 15:11–26

    Article  CAS  Google Scholar 

  • Cai B, Zheng Q, Huang ZX (2005) The properties of the metal–thiolate clusters in recombinant mouse metallothionein-4. Protein J 24:327–336

    Article  CAS  Google Scholar 

  • Ceratto N, Dondero F, van de Loo J-W, Burlando B, Viarengo A (2002) Cloning and sequencing of a novel metallothionein gene in Mytilus galloprovincialis Lam. Comp Biochem Physiol 131C:217–222

    CAS  Google Scholar 

  • Choi HJ, Ji J, Chung K-H, An I-Y (2007) Cadmium bioaccumulation and detoxification in the gill and digestive gland of the Antarctic bivalve Laternula elliptica. Comp Biochem Physiol 145C:227–235

    CAS  Google Scholar 

  • Chung WP, Dewan JC, Walters MA (1991) Models of lysine–cysteine hydrogen bonding in metallothionein: hydrogen bonding between ammonium and benzenethiolate in [(C6H11)2NH2]2[Co(SC6H5)4]. J Am Chem Soc 113:525–530

    Article  CAS  Google Scholar 

  • da Rosa CE, Bianchini A, Monserrat JM (2008) Antioxidant responses of Laeonereis acuta (Polychaete) after exposure to hydrogen peroxide. Braz J Med Biol Res 41:117–121

    Article  Google Scholar 

  • Dallinger R, Berger B, Hunziker P, Kägi JHR (1997) Metallothionein in snail Cd and Cu metabolism. Nature 388:237–238

    Article  CAS  Google Scholar 

  • Davis SR, Cousins RJ (2000) Metallothionein expression in animals: a physiological perspective on function. J Nutr 130:1085–1088

    CAS  Google Scholar 

  • Dean HK (2008) The use of polychaetes (Annelida) as indicator species of marine pollution: a review. Rev Biol Trop 56:11–38

    Google Scholar 

  • Duncan KER, Stillman MJ (2006) Metal-dependent protein folding: metallation of metallothionein. J Inorg Biochem 100:2101–2107

    Article  Google Scholar 

  • Erdoğan O, Ceyhun SB, Ekinci D, Aksakal E (2011) Impact of deltamethrin exposure on mRNA expression levels of metallothionein A, B and cytochrome P450 1A in rainbow trout muscles. Gene 484:13–17

    Article  Google Scholar 

  • Fraga CG (2005) Relevance, essentiality and toxicity of trace elements in human health. Mol Aspects Med 26:235–244

    Article  CAS  Google Scholar 

  • Geracitano LA, Bocchetti R, Monserrat JM, Regoli F, Bianchini A (2004a) Oxidative stress responses in two populations of Laeonereis acuta (Polychaeta, Nereididae) after acute and chronic exposure to copper. Mar Environ Res 58:1–17

    Article  CAS  Google Scholar 

  • Geracitano LA, Luque D, Monserrat JM, Bianchini A (2004b) Histological and morphological alterations induced by copper exposure in Laeonereis acuta (Polychaeta, Nereididae). Mar Environ Res 58:263–267

    Article  CAS  Google Scholar 

  • Gills PL, Dixon DG, Borgmann U, Reynoldson TB (2004) Uptake and depuration of cadmium, nickel and lead in laboratory exposed Tubifex tubifex and corresponding changes in the concentrations of a metallothionein-like protein. Environ Toxicol Chem 23:76–85

    Article  Google Scholar 

  • Gonzalez P, Baudrimont M, Boudou A, Bourdineaud JP (2006) Comparative effects of direct cadmium contamination on gene expression in gills, liver, skeletal muscles and brain of the zebrafish (Danio rerio). Biometals 19:225–235

    Article  CAS  Google Scholar 

  • Jørgensen A, Giessing AMB, Rasmussen LJ, Andersen O (2008) Biotransformation of polycyclic aromatic hydrocarbons in marine polychaetes. Mar Environ Res 65:171–186

    Article  Google Scholar 

  • Kim J-H, Wang S-Y, Kim I-C, Ki J-S, Raisuddin S, Lee J-S, Han K-N (2008) Cloning of a river pufferfish (Takifugu obscurus) metallothionein cDNA and study of its induction profile in cadmium-exposed fish. Chemosphere 71:1251–1259

    Article  CAS  Google Scholar 

  • Kimura M, Otaki N, Imano M (1979) Rabbit liver metallothionein. In: Kägi JHR, Nordberg M (eds) Tentative amino acid sequence of metallothionein-B. Metallothionein. Birkhäuser Verlag, Basel, pp 163–168

    Google Scholar 

  • Klaassen CD, Liu J, Choudhuri S (1999) Metallothionein: an intracellular protein to protect against cadmium toxicity. Annu Rev Pharmacol Toxicol 39:267–294

    Article  CAS  Google Scholar 

  • Landrum PF, Robbins JA (1990) Bioavailability of sediment-associated contaminants to benthic invertebrates. In: Baudo R, Giesy J, Muntau H (eds) Sediments: chemistry and toxicity of in-place pollutants. Lewis Publishers, Chelsea, pp 237–263

    Google Scholar 

  • Lee SY, Nam YK (2011) Isolation and mRNA expression of metallothionein isoforms from rockbream Oplegnathus fasciatus. Korean J Fish Aquat Sci 44:126–140 (in Korean)

    Article  CAS  Google Scholar 

  • Lemoine S, Laulier M (2003) Potential use of the levels of the mRNA of a specific metallothionein isoform (MT-20) in mussel (Mytilus edulis) as a biomarker of cadmium contamination. Mar Pollut Bull 46:1450–1455

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Mason AZ, Jenkins KD (1995) Metal detoxification in aquatic organisms. In: Tessier A, Turner DR (eds) Metal speciation and bioavailability in aquatic systems. Wiley, London, pp 479–608

    Google Scholar 

  • Monserrat JM, Rosa CE, Sandrini JZ, Marins LF, Bianchini A, Geracitano LA (2003) Annelids and nematodes as sentinels of environmental pollution. Comments Toxicol 9:289–301

    Article  CAS  Google Scholar 

  • Muyssen BTA, Janssen CR (2002) Accumulation and regulation of zinc in daphnia magna: links with homeostasis and toxicity. Arch Environ Con Toxicol 43:492–496

    Article  CAS  Google Scholar 

  • Noh SA, Kwak MS, Lee HS, Huh GH (2004) Genomic organizations of two small subunit ADP-glucosepyrophosphorylase genes from sweet potato. Gene 339:173–180

    Article  CAS  Google Scholar 

  • Peraza MA, Ayala-Fierro F, Barber DS, Casarez E, Rael LT (1998) Effects of micronutrients on metal toxicity. Environ Health Perspect 106(suppl 1):203–216

    CAS  Google Scholar 

  • Ra K, Kim K-T, Lee J-M, Bang J-H, Yun M-S, Kim E-S (2010) Experimental studies on the bioaccumulation of aqueous- and sediment-associated trace metals in polychaetes. Proceedings of the 2009 Korean Society of Marine Environment Engineering Fall Annual Meeting, Korea, pp 144–149

  • Rainbow PS (2007) Trace metal bioaccumulation: models, metabolic availability and toxicity. Environ Int 33:576–582

    Article  CAS  Google Scholar 

  • Rhee J-S, Lee Y-M, Hwang D-S, Won E-J, Raisuddin S, Shin K-H, Lee J-S (2007) Molecular cloning, expression, biochemical characteristics, and biomarker potential of theta class glutathione S-transferase (GST-T) from the polycheate Neanthes succinea. Aquat Toxicol 83:104–115

    Article  CAS  Google Scholar 

  • Rhee J-S, Raisuddin S, Lee K-W, Seo JS, Ki J-S, Kim I-C, Park HG, Lee J-S (2009) Heat shock protein (Hsp) gene responses of the intertidal copepod Tigriopus japonicus to environmental toxicants. Comp Biochem Physiol C 149:104–112

    Google Scholar 

  • Roesijadi G (1992) Metallothioneins in metal regulation and toxicityin aquatic animals. Aquat Toxicol 22:81–114

    Article  CAS  Google Scholar 

  • Roesijadi G (1996) Metallothionein and its role in toxic metal regulation. Comp Biochem Physiol 113C:117–123

    CAS  Google Scholar 

  • Serafim A, Bebianno MJ (2009) Metallothionein role in the kinetic model of copper accumulation and elimination in the clam Ruditapes decussatus. Environ Res 109:390–399

    Article  CAS  Google Scholar 

  • Spurgeon DJ, Hopkin SP (1999) Comparisons of metal accumulation and excretion kinetics in earthworms (Eisenia fetida) exposed to contaminated field and laboratory soil. Appl Soil Ecol 11:227–243

    Article  Google Scholar 

  • Stillman MJ, Cai W, Zelazowski AJ (1987) Cadmium binding to metallothionein. J Biol Chem 262:4538–4548

    Google Scholar 

  • Sun F-H, Zhou Q-X (2007) Metal accumulation in the polychaete Hediste japonica with emphasison interaction between heavy metals and petroleum hydrocarbons. Environ Pollut 149:92–98

    Article  CAS  Google Scholar 

  • Suzuki KT, Rui M, Ueda JI, Ozawa T (1996) Production of hydroxyl radicals by copper-containing metallothionein: roles as prooxidant. Toxicol Appl Pharmacol 141:231–237

    Google Scholar 

  • Swain SC, Keusekotten K, Baumeister R, Stürzenbaum SR (2004) C. elegans metallothionein: new insights into the phenotypic effects of cadmium toxicosis. J Mol Biol 341:951–959

    Article  CAS  Google Scholar 

  • Tessier A, Campbell PGC (1987) Partitioning of tracemetals in sediments: relationships with bioavailability. Hydrobiologia 149:43–52

    Article  CAS  Google Scholar 

  • USEPA (2009) National recommended water quality criteria. U.S. Environmental Protection Agency, Office of Science and Technology, Office of Water (4304T), Washington, DC, 2 pp

  • Viarengo A, Ponzano A, Donderob F, Fabbrih R (1997) A simple spectrophotometric method for metallothionein evaluation in marine organisms: an application to Mediterranean and Antarctic molluscs. Mar Environ Res 44:69–84

    Article  CAS  Google Scholar 

  • Viarengo A, Burlando B, Ceratto N, Panfoli I (2000) Antioxidant role of metallothioneins: a comparative overview. Cell Mol Biol 46:407–417

    CAS  Google Scholar 

  • Vymazal J (1990) Uptake of heavy metals by Cladophora glomerata. Acta Hydrochem Hydrobiol 18:657–665

    Article  CAS  Google Scholar 

  • Won E-J, Raisuddin S, Shin K-H (2008) Evaluation of induction of metallothionein-like proteins (MTLPs) in the polychaetes for biomonitoring of heavy metal pollution in marine sediments. Mar Pollut Bull 57:544–551

    Article  CAS  Google Scholar 

  • Won E-J, Kim R-O, Rhee J-S, Park G-S, Lee J, Shin K-H, Lee Y-M, Lee J-S (2011) Response of glutathione S-transferase (GST) genes to cadmium exposure in the marine pollution indicator worm, Perinereis nuntia. Comp Biochem Physiol C 154:82–92

    Google Scholar 

  • Won E-J, Rhee J-S, Kim R-O, Ra K, Kim K-T, Shin K-H, Lee J-S (2012) Susceptibility to oxidative stress and modulated expression of antioxidant genes in the copper-exposed polychaete, Perinereis nuntia. Comp Biochem PhysiolC 155:344–351

    CAS  Google Scholar 

  • Yan CHM, Chan KM (2004) Cloning of zebrafish metallothionein gene and characterization of its gene promoter region in HepG2 cell line. Biochim Biophys Acta 1679:47–58

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Hans-U. Dahms for his comments on the manuscript. This work was supported by a grant from MOMAF (2010) funded to Jae-Seong Lee.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kyung-Hoon Shin or Jae-Seong Lee.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

Suppl. Fig. 1

Nucleotides and deduced amino acid sequences of P. nuntia MT. Signal peptides in bold (PDF 47 kb)

Suppl. Fig. 2

Linear relationship between accumulated metal contents and MTLP levels and relative mRNA of Pn-MT in P. nuntia exposed to a. Cd; b. Pb (Pearson′s correlations) (PDF 72 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Won, EJ., Rhee, JS., Ra, K. et al. Molecular cloning and expression of novel metallothionein (MT) gene in the polychaete Perinereis nuntia exposed to metals. Environ Sci Pollut Res 19, 2606–2618 (2012). https://doi.org/10.1007/s11356-012-0905-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-0905-1

Keywords

Navigation