Skip to main content

Advertisement

Log in

Bifunctional Labeling of Rabbit Mesenchymal Stem Cells for MR Imaging and Fluorescence Microscopy

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Longitudinal imaging studies are important in the translational process of stem cell–based therapies. Small animal imaging models are widely available and practical but insufficiently depict important morphologic detail. In contrary, large animal models are logistically challenging and costly but offer greater imaging quality. In order to combine the advantages of both, we developed an intermediate-sized rabbit animal model for cartilage imaging studies.

Procedures

Rabbit mesenchymal stem cells (rMSC) were isolated as primary cultures from the bone marrow of New Zealand white rabbits. rMSC were subsequentially transduced lentivirally with eGFP and magnetically labeled with the iron oxide ferucarbotran. eGFP expression was evaluated by flow cytometry and iron uptake was analyzed by isotope dilution mass spectrometry and Prussian blue staining. Fluorescence microscopy of eGFP-transduced rMSC was performed. Viability and induction of apoptosis were assessed by XTT and caspase-3/-7 measurements. The chondrogenic potential of labeled cells was quantified by glycosaminoglycan contents in TGF-β3 induced pellet cultures. Labeled and unlabeled cells underwent magnetic resonance imaging (MRI) at 1.5 T before and after differentiation using T1-, T2-, and T2*-weighted pulse sequences. Relaxation rates were calculated. rMSCs were implanted in fibrin clots in osteochondral defects of cadaveric rabbit knees and imaged by 7 T MRI. T2* maps were calculated. Statistical analyses were performed using multiple regression models.

Results

Efficiency of lentiviral transduction was greater than 90 %. Fluorescence signal was dose dependent. Cellular iron uptake was significant for all concentrations (p < 0.05) and dose dependent (3.3–56.5 pg Fe/cell). Labeled rMSC showed a strong, dose-dependent contrast on all MR pulse sequences and a significant decrease in T2 and T2* relaxation rates. Compared with non-transduced or unlabeled controls, there were no adverse effects on cell viability, rate of apoptosis, or chondrogenic differentiation. MRI of labeled rMSCs in osteochondral defects showed a significant signal of the transplant with additional high-resolution anatomical information.

Conclusions

This intermediate-sized rabbit model and its bifunctional labeling technique allow for improved depiction of anatomic detail for noninvasive in vivo rMSC tracking with MRI and for immunohistological correlation by fluorescence microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. Yong KW, Choi JR, Mohammadi M et al (2018) Mesenchymal stem cell therapy for ischemic tissues. Stem Cells Int 2018:8179075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shafei AE, Ali MA, Ghanem HG, et al. (2017) Mesenchymal stem cell therapy: A promising cell-based therapy for treatment of myocardial infarction. J Gene Med 19:e2995

  3. Kakkar A, Sorout A, Tiwari M, Shrivastava P, Meena P, Saraswat SK, Srivastava S, Datt R, Pandey S (2018) Current status of stem cell treatment for type I diabetes mellitus. Tissue Eng Regen Med 15:699–709

    Article  PubMed  PubMed Central  Google Scholar 

  4. Scuteri A, Monfrini M (2018) Mesenchymal Stem Cells as New Therapeutic Approach for Diabetes and Pancreatic Disorders. Int J Mol Sci 19:2783

  5. Gardner OF, Archer CW, Alini M et al (2013) Chondrogenesis of mesenchymal stem cells for cartilage tissue engineering. Histol Histopathol 28:23–42

    CAS  PubMed  Google Scholar 

  6. Centeno CJ, Busse D, Kisiday J et al (2008) Increased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells. Pain Physician 11:343–353

    PubMed  Google Scholar 

  7. Goldberg A, Mitchell K, Soans J, Kim L, Zaidi R (2017) The use of mesenchymal stem cells for cartilage repair and regeneration: a systematic review. J Orthop Surg Res 12:39

    Article  PubMed  PubMed Central  Google Scholar 

  8. Peterson L, Vasiliadis HS, Brittberg M, Lindahl A (2010) Autologous chondrocyte implantation: a long-term follow-up. Am J Sports Med 38:1117–1124

    Article  PubMed  Google Scholar 

  9. Jorgensen C, Gordeladze J, Noel D (2004) Tissue engineering through autologous mesenchymal stem cells. Curr Opin Biotechnol 15:406–410

    Article  CAS  PubMed  Google Scholar 

  10. Chen FH, Tuan RS (2008) Mesenchymal stem cells in arthritic diseases. Arthritis Res Ther 10:223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Murphy JM, Fink DJ, Hunziker EB, Barry FP (2003) Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum 48:3464–3474

    Article  PubMed  Google Scholar 

  12. Jing XH, Yang L, Duan XJ, Xie B, Chen W, Li Z, Tan HB (2008) In vivo MR imaging tracking of magnetic iron oxide nanoparticle labeled, engineered, autologous bone marrow mesenchymal stem cells following intra-articular injection. Joint Bone Spine 75:432–438

    Article  PubMed  Google Scholar 

  13. van Velthoven CT, Kavelaars A, Heijnen CJ (2012) Mesenchymal stem cells as a treatment for neonatal ischemic brain damage. Pediatr Res 71:474–481

    Article  CAS  PubMed  Google Scholar 

  14. Henning TD, Gawande R, Khurana A, et al. (2012) Magnetic resonance imaging of ferumoxide-labeled mesenchymal stem cells in cartilage defects: in vitro and in vivo investigations. Mol Imaging 11:197–209

  15. Hwang YH, Lee DY (2012) Magnetic resonance imaging using heparin-coated superparamagnetic iron oxide nanoparticles for cell tracking in vivo. Quant Imaging Med Surg 2:118–123

    PubMed  PubMed Central  Google Scholar 

  16. Jaffer FA, Weissleder R (2005) Molecular imaging in the clinical arena. Jama 293:855–862

    Article  CAS  PubMed  Google Scholar 

  17. Ding W, Bai J, Zhang J, Chen Y, Cao L, He Y, Shen L, Wang F, Tian J (2004) In vivo tracking of implanted stem cells using radio-labeled transferrin scintigraphy. Nucl Med Biol 31:719–725

    Article  CAS  PubMed  Google Scholar 

  18. Jasmin, Torres AL, Jelicks L et al (2012) Labeling stem cells with superparamagnetic iron oxide nanoparticles: analysis of the labeling efficacy by microscopy and magnetic resonance imaging. Methods Mol Biol 906:239–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bulte JW, Kraitchman DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17:484–499

    Article  CAS  PubMed  Google Scholar 

  20. Meier R, Henning TD, Boddington S, Tavri S, Arora S, Piontek G, Rudelius M, Corot C, Daldrup-Link HE (2010) Breast cancers: MR imaging of folate-receptor expression with the folate-specific nanoparticle P1133. Radiology 255:527–535

    Article  PubMed  Google Scholar 

  21. Lalande C, Miraux S, Derkaoui SM et al (2011) Magnetic resonance imaging tracking of human adipose derived stromal cells within three-dimensional scaffolds for bone tissue engineering. Eur Cell Mater 21:341–354

    Article  CAS  PubMed  Google Scholar 

  22. Henning TD, Wendland MF, Golovko D, Sutton EJ, Sennino B, Malek F, Bauer JS, McDonald DM, Daldrup-Link H (2009) Relaxation effects of ferucarbotran-labeled mesenchymal stem cells at 1.5T and 3T: discrimination of viable from lysed cells. Magn Reson Med 62:325–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Reimer P, Balzer T (2003) Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications. Eur Radiol 13:1266–1276

    Article  PubMed  Google Scholar 

  24. Boutry S, Brunin S, Mahieu I, Laurent S, Elst LV, Muller RN (2008) Magnetic labeling of non-phagocytic adherent cells with iron oxide nanoparticles: a comprehensive study. Contrast Media Mol Imaging 3:223–232

    Article  CAS  PubMed  Google Scholar 

  25. Metz S, Bonaterra G, Rudelius M, Settles M, Rummeny EJ, Daldrup-Link HE (2004) Capacity of human monocytes to phagocytose approved iron oxide MR contrast agents in vitro. Eur Radiol 14:1851–1858

    Article  PubMed  Google Scholar 

  26. Henning TD, Sutton EJ, Kim A, Golovko D, Horvai A, Ackerman L, Sennino B, McDonald D, Lotz J, Daldrup-Link HE (2009) The influence of ferucarbotran on the chondrogenesis of human mesenchymal stem cells. Contrast Media Mol Imaging 4:165–173

    Article  CAS  PubMed  Google Scholar 

  27. Mailander V, Lorenz MR, Holzapfel V et al (2008) Carboxylated superparamagnetic iron oxide particles label cells intracellularly without transfection agents. Mol Imaging Biol 10:138–146

    Article  PubMed  Google Scholar 

  28. Daldrup-Link HE, Rudelius M, Piontek G, Metz S, Bräuer R, Debus G, Corot C, Schlegel J, Link TM, Peschel C, Rummeny EJ, Oostendorp RAJ (2005) Migration of iron oxide-labeled human hematopoietic progenitor cells in a mouse model: in vivo monitoring with 1.5-T MR imaging equipment. Radiology 234:197–205

    Article  PubMed  Google Scholar 

  29. Henning TD, Gawande R, Khurana A, Tavri S, Mandrussow L, Golovko D, Horvai A, Sennino B, McDonald D, Meier R, Wendland M, Derugin N, Link TM, Daldrup-Link HE (2012) Magnetic resonance imaging of ferumoxide-labeled mesenchymal stem cells in cartilage defects: in vitro and in vivo investigations. Mol Imaging 11:197–209

    Article  CAS  PubMed  Google Scholar 

  30. Ma GS, Qi CM, Liu NF, Shen CX, Chen Z, Liu XJ, Hu YP, Zhang XL, Teng GJ, Ju SH, Ma M, Tang YL (2011) Efficiently tracking of stem cells in vivo using different kinds of superparamagnetic iron oxide in swine with myocardial infarction. Chin Med J 124:1199–1204

    PubMed  Google Scholar 

  31. Schrauth JH, Lykowsky G, Hemberger K et al (2016) Comparison of multiple quantitative MRI parameters for characterization of the goat cartilage in an ongoing osteoarthritis: dGEMRIC, T1rho and sodium. Z Med Phys 26:270–282

    Article  PubMed  Google Scholar 

  32. Nejadnik H, Henning TD, Castaneda RT, Boddington S, Taubert S, Jha P, Tavri S, Golovko D, Ackerman L, Meier R, Daldrup-Link HE (2012) Somatic differentiation and MR imaging of magnetically labeled human embryonic stem cells. Cell Transplant 21:2555–2567

    Article  PubMed  Google Scholar 

  33. Domayer SE, Welsch GH, Dorotka R, Mamisch T, Marlovits S, Szomolanyi P, Trattnig S (2008) MRI monitoring of cartilage repair in the knee: a review. Semin Musculoskelet Radiol 12:302–317

    Article  PubMed  Google Scholar 

  34. Crema MD, Roemer FW, Marra MD, Burstein D, Gold GE, Eckstein F, Baum T, Mosher TJ, Carrino JA, Guermazi A (2011) Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research. Radiographics 31:37–61

    Article  PubMed  Google Scholar 

  35. Tins BJ, McCall IW, Takahashi T et al (2005) Autologous chondrocyte implantation in knee joint: MR imaging and histologic features at 1-year follow-up. Radiology 234:501–508

    Article  PubMed  Google Scholar 

  36. Takahashi T, Tins B, McCall IW et al (2006) MR appearance of autologous chondrocyte implantation in the knee: correlation with the knee features and clinical outcome. Skelet Radiol 35:16–26

    Article  CAS  Google Scholar 

  37. Henderson IJ, Tuy B, Connell D et al (2003) Prospective clinical study of autologous chondrocyte implantation and correlation with MRI at three and 12 months. J Bone Joint Surg (Br) 85:1060–1066

    Article  CAS  Google Scholar 

  38. de Windt TS, Welsch GH, Brittberg M, et al. (2013) Is magnetic resonance imaging reliable in predicting clinical outcome after articular cartilage repair of the knee? A systematic review and meta-analysis. Am J Sports Med 41:1695–1702

  39. Mina M, Braut A (2004) New insight into progenitor/stem cells in dental pulp using Col1a1-GFP transgenes. Cells Tissues Organs 176:120–133

    Article  CAS  PubMed  Google Scholar 

  40. Balic A, Rodgers B, Mina M (2009) Mineralization and expression of Col1a1-3.6GFP transgene in primary dental pulp culture. Cells Tissues Organs 189:163–168

    Article  CAS  PubMed  Google Scholar 

  41. Richardson DR, Chua AC, Baker E (1999) Activation of an iron uptake mechanism from transferrin in hepatocytes by small-molecular-weight iron complexes: implications for the pathogenesis of iron-overload disease. J Lab Clin Med 133:144–151

    Article  CAS  PubMed  Google Scholar 

  42. Daldrup-Link HE, Rudelius M, Oostendorp RA et al (2003) Targeting of hematopoietic progenitor cells with MR contrast agents. Radiology 228:760–767

    Article  PubMed  Google Scholar 

  43. Hoepken HH, Korten T, Robinson SR, Dringen R (2004) Iron accumulation, iron-mediated toxicity and altered levels of ferritin and transferrin receptor in cultured astrocytes during incubation with ferric ammonium citrate. J Neurochem 88:1194–1202

    Article  CAS  PubMed  Google Scholar 

  44. Pawelczyk E, Arbab AS, Pandit S, Hu E, Frank JA (2006) Expression of transferrin receptor and ferritin following ferumoxides-protamine sulfate labeling of cells: implications for cellular magnetic resonance imaging. NMR Biomed 19:581–592

    Article  CAS  PubMed  Google Scholar 

  45. Arbab AS, Yocum GT, Rad AM, Khakoo AY, Fellowes V, Read EJ, Frank JA (2005) Labeling of cells with ferumoxides-protamine sulfate complexes does not inhibit function or differentiation capacity of hematopoietic or mesenchymal stem cells. NMR Biomed 18:553–559

    Article  CAS  PubMed  Google Scholar 

  46. Kostura L, Kraitchman DL, Mackay AM, Pittenger MF, Bulte JWM (2004) Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis. NMR Biomed 17:513–517

    Article  PubMed  Google Scholar 

  47. Bulte JW, Kraitchman DL, Mackay AM, Pittenger MF (2004) Chondrogenic differentiation of mesenchymal stem cells is inhibited after magnetic labeling with ferumoxides. Blood 104:3410–3412 author reply 3412-3413

    Article  CAS  PubMed  Google Scholar 

  48. Stockwell RA (1971) The interrelationship of cell density and cartilage thickness in mammalian articular cartilage. J Anat 109:411–421

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Frisbie DD, Cross MW, McIlwraith CW (2006) A comparative study of articular cartilage thickness in the stifle of animal species used in human pre-clinical studies compared to articular cartilage thickness in the human knee. Vet Comp Orthop Traumatol 19:142–146

    Article  CAS  PubMed  Google Scholar 

  50. Chu CR, Szczodry M, Bruno S (2010) Animal models for cartilage regeneration and repair. Tissue Eng Part B Rev 16:105–115

    Article  PubMed  PubMed Central  Google Scholar 

  51. Shepherd DE, Seedhom BB (1999) Thickness of human articular cartilage in joints of the lower limb. Ann Rheum Dis 58:27–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kshirsagar AA, Watson PJ, Tyler JA et al (1998) Measurement of localized cartilage volume and thickness of human knee joints by computer analysis of three-dimensional magnetic resonance images. Investig Radiol 33:289–299

    Article  CAS  Google Scholar 

  53. Peterfy CG, van Dijke CF, Janzen DL, Glüer CC, Namba R, Majumdar S, Lang P, Genant HK (1994) Quantification of articular cartilage in the knee with pulsed saturation transfer subtraction and fat-suppressed MR imaging: optimization and validation. Radiology 192:485–491

    Article  CAS  PubMed  Google Scholar 

  54. Lo CM, Wang HB, Dembo M, Wang YL (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79:144–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Duong H, Wu B, Tawil B (2009) Modulation of 3D fibrin matrix stiffness by intrinsic fibrinogen-thrombin compositions and by extrinsic cellular activity. Tissue Eng Part A 15:1865–1876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang YX (2011) Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging Med Surg 1:35–40

    PubMed  PubMed Central  Google Scholar 

  57. Xiao YD, Paudel R, Liu J, Ma C, Zhang ZS, Zhou SK (2016) MRI contrast agents: classification and application (review). Int J Mol Med 38:1319–1326

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank M. Settles for his support in MRI imaging and G. Piontek for Prussian Blue staining.

Funding

This work was supported by the German Research Foundation through DFG grant HE 4578/3-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus T. Berninger.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PDF 88 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berninger, M.T., Rodriguez-Gonzalez, P., Schilling, F. et al. Bifunctional Labeling of Rabbit Mesenchymal Stem Cells for MR Imaging and Fluorescence Microscopy. Mol Imaging Biol 22, 303–312 (2020). https://doi.org/10.1007/s11307-019-01385-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-019-01385-8

Key words

Navigation