Skip to main content
Log in

Disease progression-associated alterations in fecal metabolites in SAMP1/YitFc mice, a Crohn’s disease model

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Crohn’s disease (CD) is a chronic, relapsing inflammatory bowel disease affecting the gastrointestinal tract. Although its precise etiology has not been fully elucidated, an imbalance of the intestinal microbiota has been known to play a role in CD. Fecal metabolites derived from microbiota may be related to the onset and progression of CD

Objectives

This study aimed to clarify the transition of gut microbiota and fecal metabolites associated with disease progression using SAMP1/YitFc mice, a model of spontaneous CD

Methods

The ileum tissues isolated from SAMP1/YitFc mice at different ages were stained with hematoxylin–eosin for histologic characterization with CD progression. Feces from control, Institute of Cancer Research (ICR; n = 6), and SAMP1/YitFc (n = 8) mice at different ages were subjected to microbial analysis and 1H nuclear magnetic resonance (NMR) analysis to investigate fluctuations in gut microbiota and fecal metabolites with CD progression

Results

Relative abundance of the Lachnospiraceae, Ruminococcaceae, Bacteroidaceae, and Bacteroidales S24-7 at family-level gut microbiota and fecal metabolites, such as short-chain fatty acids, lactate, glucose, xylose, and choline, dramatically fluctuated with histologic progression of intestinal inflammation in SAMP1/YitFc mice. Unlike the other metabolites, fecal taurine concentration in SAMP1/YitFc mice was higher than ICR mice regardless of age

Conclusion

The fecal metabolites showing characteristic fluctuations may help to understand the inflammatory mechanism associated with CD, and might be utilized as potential biomarkers in predicting CD pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andoh, A., Kuzuoka, H., Tsujikawa, T., Nakamura, S., Hirai, F., Suzuki, Y., et al. (2012). Multicenter analysis of fecal microbiota profiles in Japanese patients with Crohn’s disease. Journal of Gastroenterology,47(12), 1298–1307.

    Article  Google Scholar 

  • Bjerrum, J. T., Wang, Y., Hao, F., Coskun, M., Ludwig, C., Günther, U., et al. (2015). Metabonomics of human fecal extracts characterize ulcerative colitis, Crohn’s disease and healthy individuals. Metabolomics,11(1), 122–133.

    Article  CAS  Google Scholar 

  • Brusaferro, A., Cavalli, E., Farinelli, E., Cozzali, R., Principi, N., & Esposito, S. (2019). Gut dysbiosis and paediatric Crohn’s disease. Journal of Infection,78(1), 1–7.

    Article  Google Scholar 

  • Chen, X., & Yu, D. (2019). Metabolomics study of oral cancers. Metabolomics,15(2), 22.

    Article  Google Scholar 

  • De Preter, V., Machiels, K., Joossens, M., Arijs, I., Matthys, C., Vermeire, S., et al. (2015). Faecal metabolite profiling identifies medium-chain fatty acids as discriminating compounds in IBD. Gut,64(3), 447–458.

    Article  Google Scholar 

  • Feldman, A. T., & Wolfe, D. (2014). Tissue processing and hematoxylin and eosin staining. Histopathology: Methods and protocols, methods in molecular biology (pp. 31–43). New York: Springer.

    Chapter  Google Scholar 

  • Furusawa, Y., Obata, Y., Fukuda, S., Endo, T. A., Nakato, G., Takahashi, D., et al. (2013). Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature,504(7480), 446–450.

    Article  CAS  Google Scholar 

  • Geirnaert, A., Calatayud, M., Grootaert, C., Laukens, D., Devriese, S., Smagghe, G., et al. (2017). Butyrate-producing bacteria supplemented in vitro to Crohn’s disease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity. Scientific Reports,7(1), 1–14.

    Article  CAS  Google Scholar 

  • Giriş, M., Depboylu, B., Doǧru-Abbasoǧlu, S., Erbil, Y., Olgaç, V., Aliş, H., et al. (2008). Effect of taurine on oxidative stress and apoptosis-related protein expression in trinitrobenzene sulphonic acid-induced colitis. Clinical and Experimental Immunology,152(1), 102–110.

    Article  PubMed  Google Scholar 

  • Halestrap, A. P., & Meredith, D. (2004). The SLC16 gene family—From monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. European Journal of Physiology,447(5), 619–628.

    Article  CAS  Google Scholar 

  • Hampe, J., Franke, A., Rosenstiel, P., Till, A., Teuber, M., Huse, K., et al. (2007). A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nature Genetics,39(2), 207–211.

    Article  CAS  Google Scholar 

  • Hugot, J. P., Chamaillard, M., Zouali, H., Lesage, S., Cézard, J. P., Belaiche, J., et al. (2001). Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature,411(6837), 599–603.

    Article  CAS  Google Scholar 

  • Imhann, F., Vich Vila, A., Bonder, M. J., Fu, J., Gevers, Di, Visschedijk, M. C., et al. (2017). Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. Gut,67(1), 108–119.

    Article  Google Scholar 

  • Karu, N., Deng, L., Slae, M., Guo, A. C., Sajed, T., Huynh, H., et al. (2018). A review on human fecal metabolomics: Methods, applications and the human fecal metabolome database. Analytica Chimica Acta,1030, 1–24.

    Article  CAS  Google Scholar 

  • Kozaiwa, K., Sugawara, K., Smith, M. F., Carl, V., Yamschikov, V., Belyea, B., et al. (2003). Identification of a quantitative trait locus for ileitis in a spontaneous mouse model of Crohn’s disease: SAMP1/YitFc. Gastroenterology,125(2), 477–490.

    Article  Google Scholar 

  • Laass, M. W., Roggenbuck, D., & Conrad, K. (2014). Diagnosis and classification of Crohn’s disease. Autoimmunity Reviews,13(4–5), 467–471.

    Article  Google Scholar 

  • Le Gall, G., Noor, S. O., Ridgway, K., Scovell, L., Jamieson, C., Johnson, I. T., et al. (2011). Metabolomics of fecal extracts detects altered metabolic activity of gut microbiota in ulcerative colitis and irritable bowel syndrome. Journal of Proteome Research,10(9), 4208–4218.

    Article  Google Scholar 

  • Li, J. V., Saric, J., Yap, I. K. S., Utzinger, J., & Holmes, E. (2013). Metabonomic investigations of age- and batch-related variations in female NMRI mice using proton nuclear magnetic resonance spectroscopy. Molecular BioSystems,9(12), 3155–3165.

    Article  CAS  Google Scholar 

  • Li, N., & Shi, R. H. (2018). Updated review on immune factors in pathogenesis of Crohn’s disease. World Journal of Gastroenterology,24(1), 15–22.

    Article  CAS  PubMed  Google Scholar 

  • Mahadevan, S., Shah, S. L., Marrie, T. J., & Slupsky, C. M. (2008). Analysis of metabolomic data using support vector machines. Analytical Chemistry,80(19), 7562–7570.

    Article  CAS  Google Scholar 

  • Manichanh, C., Rigottier-Gois, L., Bonnaud, E., Gloux, K., Pelletier, E., Frangeul, L., et al. (2006). Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut,55(2), 205–211.

    Article  CAS  PubMed  Google Scholar 

  • Maslowski, K. M., Vieira, A. T., Ng, A., Kranich, J., Sierro, F., Di, Yu, et al. (2009). Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature,461(7268), 1282–1286.

    Article  CAS  PubMed  Google Scholar 

  • Moco, S., Bino, R. J., De Vos, R. C. H., & Vervoort, J. (2007). Metabolomics technologies and metabolite identification. Trends in Analytical Chemistry,26(9), 855–866.

    Article  CAS  Google Scholar 

  • Morita, N., Umemoto, E., Fujita, S., Hayashi, A., Kikuta, J., Kimura, I., et al. (2019). GPR31-dependent dendrite protrusion of intestinal CX3CR1+ cells by bacterial metabolites. Nature,566(7742), 110–114.

    Article  CAS  Google Scholar 

  • Moura, F. A., de Andrade, K. Q., dos Santos, J. C. F., Araújo, O. R. P., & Goulart, M. O. F. (2015). Antioxidant therapy for treatment of inflammatory bowel disease: Does it work? Redox Biology,6, 617–639.

    Article  CAS  PubMed  Google Scholar 

  • Mourad, F. H., Barada, K. A., & Saade, N. E. (2017). Impairment of small Intestinal function in ulcerative colitis: Role of enteric innervation. Journal of Crohn’s & Colitis,11(3), 369–377.

    Google Scholar 

  • Ng, S. C., Bernstein, C. N., Vatn, M. H., Lakatos, P. L., Loftus, E. V., Tysk, C., et al. (2013). Geographical variability and environmental risk factors in inflammatory bowel disease. Gut,62(4), 630–649.

    Article  Google Scholar 

  • Pizarro, T. T., Pastorelli, L., Bamias, G., Garg, R. R., Reuter, B. K., Mercado, J. R., et al. (2011). SAMP1/YitFc mouse strain: A spontaneous model of Crohn’s disease-like ileitis. Inflammatory Bowel Diseases,17(12), 2566–2584.

    Article  PubMed  Google Scholar 

  • Rivera-Nieves, J., Bamias, G., Vidrich, A., Marini, M., Pizarro, T. T., McDuffie, M. J., et al. (2003). Emergence of perianal fistulizing disease in the SAMP1/YitFc mouse, a spontaneous model of chronic ileitis. Gastroenterology,124(4), 972–982.

    Article  Google Scholar 

  • Ruiz-Canela, M., Hruby, A., Clish, C. B., Liang, L., Martínez-González, M. A., & Hu, F. B. (2017). Comprehensive metabolomic profiling and incident cardiovascular disease: A systematic review. Journal of the American Heart Association,6(10), 1–22.

    Article  Google Scholar 

  • Santiago, G. T., Contreras, J. I. S., Camargo, M. E. M., & Vallejo, L. G. Z. (2019). NMR-based metabonomic approach reveals changes in the urinary and fecal metabolome caused by resveratrol. Journal of Pharmaceutical and Biomedical Analysis,162, 234–241.

    Article  Google Scholar 

  • Saric, J., Wang, Y., Li, J., Coen, M., Utzinger, J., Marchesi, J. R., et al. (2008). Species variation in the fecal metabolome gives insight into differential gastrointestinal function. Journal of Proteome Research,7(1), 352–360.

    Article  CAS  Google Scholar 

  • Sheehan, D., Moran, C., & Shanahan, F. (2015). The microbiota in inflammatory bowel disease. Journal of Gastroenterology,50(5), 495–507.

    Article  CAS  Google Scholar 

  • Sokol, H., Seksik, P., Furet, J. P., Firmesse, O., Nion-Larmurier, I., Beaugerie, L., et al. (2009). Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflammatory Bowel Diseases,15(8), 1183–1189.

    Article  CAS  Google Scholar 

  • Takaishi, H., Matsuki, T., Nakazawa, A., Takada, T., Kado, S., Asahara, T., et al. (2008). Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease. International Journal of Medical Microbiology,298(5–6), 463–472.

    Article  CAS  Google Scholar 

  • Thibault, R., De Coppet, P., Daly, K., Bourreille, A., Cuff, M., Bonnet, C., et al. (2007). Down-regulation of the monocarboxylate transporter 1 is involved in butyrate deficiency during intestinal inflammation. Gastroenterology,133(6), 1916–1927.

    Article  CAS  Google Scholar 

  • Tian, Y., Zhang, L., Wang, Y., & Tang, H. (2011). Age-related topographical metabolic signatures for the rat gastrointestinal contents. Journal of Proteome Research,11(2), 1397–1411.

    Article  Google Scholar 

  • Yu, L., Li, K., & Zhang, X. (2017). Next-generation metabolomics in lung cancer diagnosis, treatment and precision medicine: Mini review. Oncotarget,8(70), 115774–115786.

    Article  PubMed  Google Scholar 

  • Zeisel, S. H. (1994). Choline and human nutrition. Annual Review of Nutrition,14(1), 269–296.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Hiroyuki Kumeta, Dr. Yasuhiro Kumaki, and Dr. Yuki Ohnishi of the Open Facility Division, Global Facility Center, Creative Research Institution, Hokkaido University for performing the NMR analysis using NMR spectrometer and for providing insight and expertise that greatly assisted the research. This research was supported by grants from the Center of Innovation Program from Japan Science and Technology Agency, JST, Grant Number JPMJCE1301.

Author information

Authors and Affiliations

Authors

Contributions

MY performed the animal experiments and the microbiome study. YS performed the NMR measurement. YK analyzed all data and wrote the paper. YK, MK, KN, TA, and TA contributed to the study conception and design. TA holds the primary responsibility for the final content. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Tomoyasu Aizawa.

Ethics declarations

Conflict of interest

Y.K. is an employee of Morinaga Milk Industry Co., Ltd. The other authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PPT 173 kb)

Supplementary file2 (PPT 125 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komatsu, Y., Shimizu, Y., Yamano, M. et al. Disease progression-associated alterations in fecal metabolites in SAMP1/YitFc mice, a Crohn’s disease model. Metabolomics 16, 48 (2020). https://doi.org/10.1007/s11306-020-01671-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-020-01671-5

Keywords

Navigation