Skip to main content

Advertisement

Log in

Nutrimetabolomics: integrating metabolomics in nutrition to disentangle intake of animal-based foods

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Food intake and metabolization of foods is a complex and multi-facetted process that encompasses the introduction of new metabolite compounds in our body, initiation or alterations in endogenous metabolic processes and biochemical pathways, and likely also involving the activity of the gut microbial community that we host. The explorative nature of metabolomics makes it a superior tool for examining the whole response to food intake in a more thorough way and has led to the introduction of the term nutrimetabolomics. Protein derived from animal sources constitutes an important part of our diet, and there is therefore an interest in understanding how these animal-derived dietary sources influence us metabolically. This review aims to illuminate how the introduction of nutrimetabolomics has contributed to gain novel insight into metabolic and nutritional aspects related to intake of animal-based foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Reprinted from Lillefosse et al. (2014). J. Proteome Research, 13, 2560–2570: http://pubs.acs.org/doi/abs/10.1021%2Fpr500039t with permission from ACS. Further permissions related to the material excerpted should be directed to the ACS

Fig. 2

Similar content being viewed by others

References

  • Abd El-Salam, M. H., & El-Shibiny, S. (2017). Preparation, properties, and uses of enzymatic milk protein hydrolysates. Critical Reviews in Food Science & Nutrion, 57(6), 1119–1132.

    Article  CAS  Google Scholar 

  • Alexander, D. D., Bylsma, L. C., Vargas, A. J., Cohen, S. S., Doucette, A., Mohamed, M., et al. (2016). Dairy consumption and CVD: A systematic review and meta-analysis. British Journal of Nutrition, 115(4), 737–750.

    Article  CAS  PubMed  Google Scholar 

  • Alexander, D. D., Weed, D. L., Miller, P. E., & Mohamed, M. A. (2015). Red meat and colorectal cancer: A quantitative update on the state of the epidemiologic science. Journal of the American College of Nutrition, 34, 521–543.

    Article  PubMed  PubMed Central  Google Scholar 

  • Aon, M. A., & Cortassa, S. (2015). Systems biology of the fluxome. Processes, 3, 607–618.

    Article  Google Scholar 

  • Artaud-Wild, S. M., Connor, S. L., Sexton, G., & Connor, W. E. (1993). Differences in coronary mortality can be explained by differences in cholesterol and saturated fat intakes in 40 countries but not in France and Finland—A paradox. Circulation, 88(6), 2771–2779.

    Article  CAS  PubMed  Google Scholar 

  • Aune, D., Ursin, G., & Veierod, M. B. (2009). Meat consumption and the risk of type 2 diabetes: A systematic review and meta-analysis of cohort studies. Diabetologia, 52, 2277–2287.

    Article  CAS  PubMed  Google Scholar 

  • Bertram, H. C., Malmendal, A., Petersen, B. O., Madsen, J. C., Pedersen, H., Nielsen, N. C., et al. (2007). Effect of magnetic field strength on NMR-based metabonomic human urine data—A comparative study of 250, 400, 500 and 800 MHz. Analytical Chemistry, 79, 7110–7115.

    Article  CAS  PubMed  Google Scholar 

  • Biong, A. S., Muller, H., Seljeflot, I., Veierod, M. B., & Pedersen, J. I. (2004). A comparison of the effects of cheese and butter on serum lipids, haemostatic variables and homocysteine. British Journal of Nutrition, 92(5), 791–797.

    Article  CAS  PubMed  Google Scholar 

  • Boland, M. J., Rae, A. N., Vereijken, J. M., Meuwissen, M. P. M., Fischer, A. R. H., van Boekel, M. A. J. S., et al. (2013). The future supply of animal-derived protein for human consumption. Trends in Food Science and Technology, 29, 62–73.

    Article  CAS  Google Scholar 

  • Bu, G., Luo, Y. K., Chen, F. S., Liu, K. L., & Zhu, T. W. (2013). Milk processing as a tool to reduce cow’s milk allergenicity: A mini-review. Dairy Science & Technology, 93(3), 211–223.

    Article  CAS  Google Scholar 

  • Burton-Freeman, B. (2010). Postprandial metabolic events and fruitderived phenolics: A review of the science. British Journal of Nutrition, 104(S3), S1–S14.

    Article  CAS  PubMed  Google Scholar 

  • Butler, L. E., & Dauterman, W. C. (1988). The effect of dietary protein levels n xenobiotic biotransformations in F344 male rats. Toxicology and Applied Pharmacology, 95, 301–310.

    Article  CAS  PubMed  Google Scholar 

  • Chen, G.-C., Wang, Y., Tong, X., Szeto, I. M. Y., Smit, G., Li, Z. N., & Qin, L. Q. (2017). Cheese consumption and risk of cardiovascular disease: A meta-analysis of prospective studies. European Journal of Nutrition, 56, 2565–2575.

    Article  CAS  PubMed  Google Scholar 

  • Cheung, W., Keski-Rahkonen, P., Assi, N., Ferrari, P., Freisling, H., Rinaldi, S., et al. (2017). A metabolomic study of biomarkers of meat and fish intake. American Journal of Clinical Nutrition, 105, 600–608.

    Article  CAS  PubMed  Google Scholar 

  • Cho, C. E., Taesuwan, S., Malysheva, O. V., Bender, E., Tulchinsky, N. F., Yan, J., et al. (2017). Trimethylamine-N-oxide (TMAO) response to animal source foods varies among healthy young men and is influenced by their gut microbiota composition: A randomized controlled trial. Molecular Nutrition & Food Research. https://doi.org/10.1002/mnfr.201600324.

    Google Scholar 

  • Clausen, M. R., Zhang, X., Yde, C. C., Ditlev, D. B., Lillefosse, H. H., Madsen, L., et al. (2015). Intake of hydrolyzed casein is associated with reduced body fat accretion and enhanced phase II metabolism in obesity prone C57BL/6J mice. PLOS One. https://doi.org/10.1371/journal.pone.0118895.

    Google Scholar 

  • Dallas, D. C., Sanctuary, M. R., Qu, Y., Khajavi, S. H., Van Zandt, A. E., Dyandra, M., et al. (2017). Personalizing protein nourishment. Critical Reviews in Food Science and Nutrition, 57, 3313–3331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunn, W. B., Broadhurst, D. I., Atherton, H. J., Goodacre, R., & Griffin, J. L. (2011). Systems level studies of mammalian metabolomes: The roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chemical Society Reviews, 40, 387–426.

    Article  CAS  PubMed  Google Scholar 

  • Eckel, R. H., Jakicic, J. M., Ard, J. D., de Jesus, J. M., Houston Miller, N., Hubbard, V. S., et al. (2014). 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Journal of The American College of Cardiology, 63, 2960–2984.

    Article  PubMed  Google Scholar 

  • Elmadfa, I., & Meyer, A. L. (2017). Animal proteins as important contributors to a healthy human diet. Annual Review of Animal Biosciences, 5, 111–131.

    Article  CAS  PubMed  Google Scholar 

  • Feeney, E. L., O’Sullivan, A., Nugent, A. P., McNulty, B., Walton, J., Flynn, A., & Gibney, E. R. (2017). Patterns of dairy food intake, body composition and markers of metabolic health in Ireland: Results from the National Adult Nutrition Survey. Nutrition & Diabetes, 7, e243. https://doi.org/10.1038/nutd.2016.54.

    Article  CAS  Google Scholar 

  • Fiehn, O. (2002). Metabolomics—The link between genotypes and phenotypes. Plant Molecular Biology, 48, 155–171.

    Article  CAS  PubMed  Google Scholar 

  • Frestedt, J. L., Zenk, J. L., Kuskowski, M. A., Ward, L. S., & Bastian, E. D. (2008). A whey-protein supplement increases fat loss and spares lean muscle in obese subjects: A randomized human clinical study. Nutrition & Metabolism. https://doi.org/10.1186/1743-7075-5-8.

    Google Scholar 

  • Givens, I. (2017). Saturated fats, dairy foods and health: A curious paradox? Nutrition Bulletin, 42, 274–282.

    Article  Google Scholar 

  • Hindmarch, J. P., Awati, A., Edwards, P. J. B., & Moughan, P. (2012). NMR-based metabolomics detection of differences in the metabolism of hydrolysed versus intact protein of similar amino acid profile. Journal of the Science of Food and Agriculture, 92, 2013–2016.

    Article  Google Scholar 

  • Jakobsen, L. M. A., Yde, C. C., Van Hecke, T., Jessen, R., Young, J. F., De Smet, S., & Bertram, H. C. (2017). Impact of red meat consumption on the metabolome of rats. Molecular Nutrition & Food Research. https://doi.org/10.1002/mnfr.201600387.

    Google Scholar 

  • Khamis, M. M., Adamko, D. J., & El-Aneed, A. (2017). Mass spectrometric based approaches in urine metabolomics and biomarker discovery. Mass Spectrometry Reviews, 36(2), 115–134. https://doi.org/10.1002/mas.21455.

    Article  CAS  PubMed  Google Scholar 

  • Koeth, R. A., Wang, Z., Levison, B. S., Koeth, R. A., et al. (2013). Intestinal microbiata metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nature Medicine, 19, 576–585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsson, S. C., & Wolk, A. (2006). Meat consumption and risk of colorectal cancer: A meta-analysis of prospective studies. International Journal of Cancer, 119(11), 2657–2664.

    Article  CAS  PubMed  Google Scholar 

  • Lee, K. W., & Cho, W. (2017). The consumption of dairy products is associated with reduced risks of obesity and metabolic syndrome in Korean women but not in men. Nutrients. https://doi.org/10.3390/nu9060630.

    Google Scholar 

  • Lillefosse, H., Clausen, M. R., Yde, C. C., Ditlev, D., Zhang, X., Du, Z.-Y., et al. (2014). Urinary loss of tricarboxylic acid cycle intermediates as revealed by metabolomics studies: An underlying mechanism to reduce lipid accretion by whey protein ingestion? Journal of Proteome Research, 13, 2560–2570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lillefosse, H. H., Tastesen, H. S., Du, Z.-Y., Ditlev, D. B., Thorsen, F. A., Madsen, L., et al. (2013). Hydrolyzed casein reduces diet-induced obesity in male C57BL/6J mice. Journal of Nutrition, 143, 1367–1375.

    Article  CAS  PubMed  Google Scholar 

  • Manninen, A. H. (2009). Protein hydrolysates in sports nutrition. Nutrition & Metabolism. https://doi.org/10.1186/1743-7075-6-38.

    Google Scholar 

  • Marshall, D. D., & Powers, R. (2017). Beyond the paradigm: Combining mass spectrometry and nuclear magnetic resonance for metabolomics. Progress in Nuclear Magnetic Resonance Spectroscopy, 100, 1–16. https://doi.org/10.1016/j.pnmrs.2017.01.001.

    Article  CAS  PubMed  Google Scholar 

  • McAllan, L., Keane, D., Schellekens, H., Roche, H. M., Korpela, R., Cryan, J. F., & Nilaweera, K. N. (2013). Whey protein isolate counteracts the effects of a high-fat diet on energy intake and hypothalamic and adipose tissue expression of energy balance-related genes. British Journal of Nutrition, 110, 2114–2126.

    Article  CAS  PubMed  Google Scholar 

  • McGrogor, R. A., & Poppitt, S. D. (2013). Milk protein for improved metabolic health: A review of the evidence. Nutrition & Metabolism, 10, 46.

    Article  Google Scholar 

  • Micha, R., Michas, G., & Mozaffarian, D. (2012). Unprocessed and processed meat and risk of coronary artery disease and type 2 diabetes—An updated review of the evidence. Current Atherosclerosis Reports, 14, 515–524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirmiran, P., Esmaillzadeh, A., & Azizi, F. (2005). Dairy consumption and body mass index: An inverse relationship. International Journal of Obesity, 29, 115–121.

    Article  CAS  PubMed  Google Scholar 

  • Münger, L. H., Trimigno, A., Picone, G., Freiburghaus, C., Pimentel, G., Burton, K. J., et al. (2017). Identification of urinary food intake biomarkers for milk, cheese, and soy-based drink by untargeted GC-MS and NMR in healthy humans. Journal of Proteome Research. https://doi.org/10.1021/acs.jproteome.7b00319.

    PubMed  Google Scholar 

  • Nestel, P. J., Chronopulos, A., & Cehun, M. (2005). Dairy fat in cheese raises LDL cholesterol less than that in butter in mildly hypercholesterolaemic subjects. European Journal of Clinical Nutrition, 59(9), 1059–1063.

    Article  CAS  PubMed  Google Scholar 

  • O’Connor, L. E., Kim, J. E., & Campbell, W. W. (2017). Total red meat intake of >0.5 servings/d does not negatively influence cardiovascular disease risk factors: A systematically searched meta-analysis of randomized controlled trials. American Journal of Clinical Nutrition, 105, 57–69.

    Article  PubMed  Google Scholar 

  • Pan, A., Sun, Q., Bernstein, A. M., Manson, J. A. E., Willett, W. C., et al. (2013). Changes in red meat consumption and subsequent risk of type 2 diabetes: Three cohorts of US men and women. JAMA Internal Medicine, 173, 1328–1335.

    Article  CAS  PubMed  Google Scholar 

  • Peiretti, P. G., Medana, C., Visentin, S., Giancotti, V., Zunino, V., & Meineri, G. (2011). Determination of carnosine, anserine, homocarnosine, pentosidine anf thiobarbituric acid reactive substances contents in meat from different animal species. Food Chemistry, 126, 1939–1947.

    Article  CAS  PubMed  Google Scholar 

  • Perk, J., De Backer, G., Gohlke, H., Graham, I., Reiner, Z., Verschuren, M., et al. (2012). European guidelines on cardiovascular disease prevention in clinical practice (version 2012). The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts). European Heart Journal, 33, 1635–1701.

    Article  CAS  PubMed  Google Scholar 

  • Psychogios, N., Hau, D. D., Peng, J., Guo, A. C., Mandal, R., Bouatra, S., et al. (2011). The human serum metabolome. PLOS One, 6(2), e16957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohrmann, S., & Linseisen, J. (2016). Processed meat: The real villain? Proceedings of The Nutrition Society, 75, 233–241.

    Article  CAS  PubMed  Google Scholar 

  • Rohrmann, S., Overvad, K., Bueno-de-Mesquita, H. B., Jabosen, M. U., Egebjerg, R., Tjønneland, A., et al. (2013). Meat consumption and mortality—Results from the European prospective investigation into cancer and nutrition. BMC Medicine, 11, article no. 63.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rombouts, C., Hemeryck, L. Y., Van Hecke, T., De Smet, T., De Vos, W. H., & Vanhaecke, L. (2017). Untargeted metabolomics of colonic digests reveals kynurenine pathway metabolites, dityrosine and 3-dehydroxycarnitine as red versus white meat discriminating metabolites. Scientific Reports, 7, 42514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross, A. B., Svelander, C., Undeland, I., Pinto, R., & Sandberg, A.-S. (2015). Herring and beef meals lead to differences in plasma 2-aminoadipic acid, β-alanine, 4-hydroxyproline, cetoleic acid, and docosahexaenoic acid concentrations in overweight men. Journal of Nutrition, 145, 2456–2463.

    Article  CAS  PubMed  Google Scholar 

  • Schmedes, M. S., Aadland, E. K., Sundekilde, U. K., Jacques, H., Lavigne, C., Graff, I. E., et al. (2016). Lean-seafood intake decreases urinary markers of mitochondrial lipid and energy metabolism in healthy subjects: Metabolomics results from a randomized crossover intervention study. Molecular Nutrition & Food Research, 60, 1661–1672. https://doi.org/10.1002/mnfr.201500785.

    Article  CAS  Google Scholar 

  • Schoenfeld, P., & Wojtczak, L. (2016). Short and medium-chain fatty acids in energy metabolism: The cellular perspective. Journal of Lipid Research, 57(6), 943–954.

    Article  CAS  Google Scholar 

  • Shi, J., Tauriainen, E., Martonen, E., Finckenberg, P., Ahlroos-Lehmus, A., Tuomainen, A., et al. (2011). Whey protein isolate protects against diet-induced obesity and fatty liver formation. International Dairy Journal, 21(8), 513–522.

    Article  CAS  Google Scholar 

  • Stanstrup, J., Rasmussen, J. E., Ritz, C., Holmer-Jensen, J., Hermansen, K., & Dragsted, L. O. (2014b). Intakes of whey protein hydrolysate and whole whey proteins are discriminated by LC-MS metabolomics. Metabolomics, 10, 719–736.

    Article  CAS  Google Scholar 

  • Stanstrup, J., Schou, S. S., Holmer-Jensen, J., Hermansen, K., & Dragsted, L. O. (2014a). Whey protein delays gastric emptying and suppress plasma fatty acids and their metabolites compared to casein, gluten, and fish protein. Journal of Proteome Research, 13, 2396–2408.

    Article  CAS  PubMed  Google Scholar 

  • Tholstrup, T., Hoy, C. E., Andersen, L. N., Christensen, R. D. K., & Sandstrom, B. (2004). Does fat in milk, butter and cheese affect blood lipids and cholesterol differently? The Journal of the American College of Nutrition, 23, 169–176.

    Article  PubMed  Google Scholar 

  • Thorning, T. K., Bertram, H. C., Bonjour, J.-P., de Groot, L., Dupont, D., Feeney, E., et al. (2017). Whole dairy matrix or single nutrients in assessment of health effects: Current evidence and knowledge gaps. American Journal of Clinical Nutrition, 105, 1033–1045.

    Article  CAS  PubMed  Google Scholar 

  • Tranberg, B., Hellgren, L. I., Lykkesfeldt, J., Sejrsen, K., Jeamet, A., Rune, I., et al. (2013). Whey protein reduces early life weight gain in mice fed a high-fat diet. PLOS One, 8(8), e71439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ussher, J. R., Lopaschuk, G. D., & Arduini, A. (2013). Gut microbiota metabolism of L-carnitine and cardiovascular risk. Atherosclerosis, 231, 456–461.

    Article  CAS  PubMed  Google Scholar 

  • Vaitheesvaran, B., Xu, J., Yee, J., Lu, Q.-Y., Go, V. L., Xiao, G. G., & Lee, W.-N. (2015). The Warburg effect: A balance of flux analysis. Metabolomics, 11, 787–796.

    Article  CAS  PubMed  Google Scholar 

  • van Duynhoven, J. P. M., & Jacobs, D. M. (2016). Assessment of dietary exposure and effect in humans: The role of NMR. Progress in Nuclear Magnetic Resonance Spectroscopy, 96, 58–72. https://doi.org/10.1016/j.pnmrs.2016.03.001.

    Article  PubMed  Google Scholar 

  • Wang, W., Wu, Y., & Zhang, D. (2016). Association of dairy products consumption with risk of obesity in children and adults: A meta-analysis of mainly cross-sectional studies. Annals of Epidemiology, 26, 870–882.

    Article  PubMed  Google Scholar 

  • Wang, Y., & Beydoun, M. A. (2009). Meat consumption is associated with obesity and central obesity among US adults. International Journal of Obesity, 35, 1104–1113.

    Google Scholar 

  • Wang, Z., Klipfell, E., Bennett, B. J., et al. (2011). Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature, 472, 57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodall, G. M., Dauterman, W. C., & DeMarini, D. M. (1996). Effect of dietary casein levels on activation of promutagens in the spiral Salmonella mutagenicity assay. II. Studies with induced rat liver S9. Mutation Research, 360, 127–143.

    Article  CAS  PubMed  Google Scholar 

  • Woting, A., & Blaut, M. (2016). The intestinal microbiota in metabolic disease. Nutrients, 8(4), article no. 202.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yde, C. C., Clausen, M. R., Ditlev, D. B., Lillefosse, H., Madsen, L., Kristiansen, K., et al. (2014). Multi-block PCA and multi-compartmental study of the metabolic responses to intake of hydrolysed versus intact casein in C57BL/6J mice by NMR-based metabolomics. Metabolomics, 10, 938–949.

    Article  CAS  Google Scholar 

  • Yin, X., Gibbons, H., Rundle, M., Frost, G., McNulty, B. A., Nugent, A. P., et al. (2017). Estimation of chicken intake by adults using metabolomics-derived markers. Journal of Nutrition, 147, 1850–1857.

    Article  CAS  Google Scholar 

  • Zhang, A., Sun, H., Wang, P., Han, Y., & Wang, X. (2012). Modern analytical techniques in metabolomics analysis. Analyst, 137(2), 293–300. https://doi.org/10.1039/c1an15605e.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, H., Yde, C. C., Clausen, M. R., Kristensen, M., Lorenzen, J., Astrup, A., & Bertram, H. C. (2015). Metabolomics investigation to shed light on cheese as a possible piece in the French paradox puzzle. Journal of Agricultural and Food Chemistry, 63, 2830–2839.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanne Christine Bertram.

Ethics declarations

Conflict of interest

Author Hanne Christine Bertram has received financial support for research activities from Arla Foods amba, the Danish Dairy Research Foundation, and Arla Food for Health, which is as a consortium between Arla Foods amba, Arla Foods Ingredients Group P/S, Aarhus University and University of Copenhagen. Author Louise M.A. Jakobsen has received financial support for research activities from Arla Foods amba.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertram, H.C., Jakobsen, L.M.A. Nutrimetabolomics: integrating metabolomics in nutrition to disentangle intake of animal-based foods. Metabolomics 14, 34 (2018). https://doi.org/10.1007/s11306-018-1322-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-018-1322-3

Keywords

Navigation