Skip to main content
Log in

Effects of dietary macronutrient composition on the fasted plasma metabolome of healthy adult cats

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Metabolomics assays have recently been used in humans for the identification of biomarkers for dietary assessment and diseases. The application of metabolomics to feline nutrition, however, has been very limited. The objective of this study was to identify how the feline blood metabolome changed in response to dietary macronutrient composition. Twelve adult domestic cats were fed four nutritionally complete diets [control, high-fat (HF), high-protein (HP), high-carbohydrate (HC)] at amounts to maintain ideal body weight and body condition score for 16 days. Overnight fasted plasma samples were collected on day 16 and subjected to liquid/gas chromatography and mass spectrometry. Principal component analysis showed that metabolite profiles of cats fed HP, HF, and HC dietary regimes formed distinct clusters. Cats fed the HP diet had a metabolite profile associated with decreased nucleotide catabolism, but increased amino acid metabolism and ketone bodies, indicating a greater use of protein and fat for energy. Cats fed the HP diet had a significant increase in metabolites associated with gut microbial metabolism. Cats fed the HF diet had metabolites indicative of increased lipid metabolism, including free fatty acids, monoacylglycerols, glycerol-3-phosphate, cholesterol, ketone bodies, and markers of oxidative stress. γ-glutamylleucine, 3-hydroxyisobutyrate, and 3-indoxyl sulfate were identified by random forest analysis to distinguish cats fed the three macronutrient-rich diets. In conclusion, macronutrient-rich diets primarily altered markers of amino acid and lipid metabolism, with little changes in markers of carbohydrate and energy metabolism. Moreover, the HP diet influenced several metabolites originating from gut microbial metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • AACC. (1983). Approved methods (8th ed.). St Paul, MN: American Association of Cereal Chemists.

    Google Scholar 

  • AAFCO. (2009). Official Publication of the Association of American Feed Control Officials. Oxford, IN: Association of American Feed Control Officials, Inc.

  • Allaway, D., Kamlage, B., Gilham, M. S., Hewson-Hughes, A. K., Wiemer, J. C., Colyer, A., et al. (2013). Effects of dietary glucose supplementation on the fasted plasma metabolome in cats and dogs. Metabolomics, 9, 1096–1108.

    Article  CAS  Google Scholar 

  • AOAC. (2006). Official methods of analysis (17th ed.). Arlington, VA: Association of Official Analytical Chemists.

    Google Scholar 

  • Aslund, F., & Beckwith, J. (1999). Bridge over troubled waters: Sensing stress by disulfide bond formation. Cell, 96, 751–753.

    Article  CAS  PubMed  Google Scholar 

  • Backus, R. C., Cave, N. J., & Keisler, D. H. (2007). Gonadectomy and high dietary fat but not high dietary carbohydrate induce gains in body weight and fat of domestic cats. British Journal of Nutrition, 98, 641–650.

    Article  CAS  PubMed  Google Scholar 

  • Bashan, N., Kovsan, J., Kachko, I., Ovadia, H., & Rudich, A. (2009). Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species. Physiological Reviews, 89, 27–71.

    Article  CAS  PubMed  Google Scholar 

  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, 57, 289–300.

    Google Scholar 

  • Botsford, J. L., & Demoss, R. D. (1972). Escherichia coli tryptophanase in the enteric environment. Journal of Bacteriology, 109, 74–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boudonck, K. J., Mitchell, M. W., Wulff, J., & Ryals, J. A. (2009). Characterization of the biochemical variability of bovine milk using metabolomics. Metabolomics, 5, 375–386.

    Article  CAS  Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.

    Article  Google Scholar 

  • Budde, E. F. (1952). The determination of fat in baked biscuit type of dog foods. Journal of the Association of Official Analytical Chemists, 35, 799–805.

    CAS  Google Scholar 

  • Calvani, R., Miccheli, A., Capuani, G., Tomassini-Miccheli, A., Puccetti, C., Delfini, M., et al. (2010). Gut microbiome-derived metabolites characterize a peculiar obese urinary metabotype. International Journal of Obesity, 34, 1095–1098.

    Article  CAS  PubMed  Google Scholar 

  • Colyer, A., Gilham, M. S., Kamlage, B., Rein, D., & Allaway, D. (2011). Identification of intra- and inter-individual metabolite variation in plasma metabolite profiles of cats and dogs. British Journal of Nutrition, 106, S146–S149.

    Article  CAS  PubMed  Google Scholar 

  • Cross, A. J., Leitzmann, M. F., Gail, M. H., Hollenbeck, A. R., Schatzkin, A., & Sinha, R. (2007). A prospective study of red and processed meat intake in relation to cancer risk. PLoS Medicine, 4, 1973–1984.

    Article  Google Scholar 

  • Cross, A. J., Ward, M. H., Schenk, M., Kulldorff, M., Cozen, W., Davis, S., et al. (2006). Meat and meat-mutagen intake and risk of non-Hodgkin lymphoma: Results from a NCI-SEER case–control study. Carcinogenesis, 27, 293–297.

    Article  CAS  PubMed  Google Scholar 

  • Elia, M., Carter, A., Bacon, S., Winearls, C. G., & Smith, R. (1981). Clinical usefulness of urinary 3-methylhistidine excretion in indicating muscle protein breakdown. British medical journal (Clinical Research Ed.), 282, 351–354.

    Article  CAS  Google Scholar 

  • Evans, J. L., Goldfine, I. D., Maddux, B. A., & Grodsky, G. M. (2002). Oxidative stress and stress-activated signaling pathways: A unifying hypothesis of type 2 diabetes. Endocrine Reviews, 23, 599–622.

    Article  CAS  PubMed  Google Scholar 

  • Everard, A., Belzer, C., Geurts, L., Ouwerkerk, J. P., Druart, C., Bindels, L. B., et al. (2013). Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proceedings of the National Academy of Sciences of the United States of America, 110, 9066–9071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feldhahn, J. R., Rand, J. S., & Martin, G. (1999). Insulin sensitivity in normal and diabetic cats. Journal of Feline Medicine and Surgery, 1, 107–115.

    Article  CAS  PubMed  Google Scholar 

  • Freedman, M. R., King, J., & Kennedy, E. (2001). Popular diets: A scientific review. Obesity Research, 9(Suppl 1), 1–40.

    Article  Google Scholar 

  • Furukawa, S., Fujita, T., Shimabukuro, M., Iwaki, M., Yamada, Y., Nakajima, Y., et al. (2004). Increased oxidative stress in obesity and its impact on metabolic syndrome. Journal of Clinical Investigation, 114, 1752–1761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gall, W. E., Beebe, K., Lawton, K. A., Adam, K. P., Mitchell, M. W., Nakhle, P. J., et al. (2010). Alpha-hydroxybutyrate is an early biomarker of insulin resistance and glucose intolerance in a nondiabetic population. PLoS One, 5, e10883.

    Article  PubMed  PubMed Central  Google Scholar 

  • Green, A. S., Ramsey, J. J., Villaverde, C., Asami, D. K., Wei, A., & Fascetti, A. J. (2008). Cats are able to adapt protein oxidation to protein intake provided their requirement for dietary protein is met. Journal of Nutrition, 138, 1053–1060.

    CAS  PubMed  Google Scholar 

  • Gregersen, S., Samocha-Bonet, D., Heilbronn, L. K., & Campbell, L. V. (2012). Inflammatory and oxidative stress responses to high-carbohydrate and high-fat meals in healthy humans. Journal of Nutrition and Metabolism. doi:10.1155/2012/238056.

    PubMed  PubMed Central  Google Scholar 

  • Hoenig, M., Thomaseth, K., Waldron, M., & Ferguson, D. C. (2007). Insulin sensitivity, fat distribution, and adipocytokine response to different diets in lean and obese cats before and after weight loss. American Journal of Physiology: Regulatory, Integrative, and Comparative Physiology, 292, R227–R234.

    CAS  Google Scholar 

  • Huffman, K. M., Shah, S. H., Stevens, R. D., Bain, J. R., Muehlbauer, M., Slentz, C. A., et al. (2009). Relationships between circulating metabolic intermediates and insulin action in overweight to obese, inactive men and women. Diabetes Care, 32, 1678–1683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeusette, I. C., Lhoest, E. T., Istasse, L. P., & Diez, M. O. (2005). Influence of obesity on plasma lipid and lipoprotein concentrations in dogs. American Journal of Veterinary Research, 66, 81–86.

    Article  CAS  PubMed  Google Scholar 

  • Kalhan, S. C., Guo, L., Edmison, J., Dasarathy, S., McCullough, A. J., Hanson, R. W., et al. (2011). Plasma metabolomic profile in nonalcoholic fatty liver disease. Metabolism, 60, 404–413.

    Article  CAS  PubMed  Google Scholar 

  • Koeth, R. A., Wang, Z., Levison, B. S., Buffa, J. A., Org, E., Sheehy, B. T., et al. (2013). Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nature Medicine, 19, 576–585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laflamme, D. P. (1997). Development and validation of a body condition score system for cats: A clinical tool. Feline Practice, 25, 13–18.

    Google Scholar 

  • Larson-Meyer, D. E., Heilbronn, L. K., Redman, L. M., Newcomer, B. R., Frisard, M. I., Anton, S., et al. (2006). Effect of calorie restriction with or without exercise on insulin sensitivity, beta-cell function, fat cell size, and ectopic lipid in overweight subjects. Diabetes Care, 29, 1337–1344.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lawton, K. A., Berger, A., Mitchell, M., Milgram, K. E., Evans, A. M., Guo, L., et al. (2008). Analysis of the adult human plasma metabolome. Pharmacogenomics, 9, 383–397.

    Article  CAS  PubMed  Google Scholar 

  • Le Stunff, C., & Bougneres, P. F. (1992). Glycerol production and utilization during the early phase of human obesity. Diabetes, 41, 444–450.

    Article  PubMed  Google Scholar 

  • Long, C. L., Birkhahn, R. H., Geiger, J. W., Betts, J. E., Schiller, W. R., & Blakemore, W. S. (1981). Urinary-excretion of 3-methylhistidine: An assessment of muscle protein catabolism in adult normal subjects and during malnutrition, sepsis, and skeletal trauma. Metabolism, 30, 765–776.

    Article  CAS  PubMed  Google Scholar 

  • MacDonald, M. L., Rogers, Q. R., & Morris, J. G. (1984). Nutrition of the domestic cat, a mammalian carnivore. Annual Review of Nutrition, 4, 521–562.

    Article  CAS  PubMed  Google Scholar 

  • Meister, A., & Tate, S. S. (1976). Glutathione and related gamma-glutamyl compounds: Biosynthesis and utilization. Annual Review of Biochemistry, 45, 559–604.

    Article  CAS  PubMed  Google Scholar 

  • Nakashima, K., Yakabe, Y., Ishida, A., Yamazaki, M., & Abe, H. (2007). Suppression of myofibrillar proteolysis in chick skeletal muscles by alpha-ketoisocaproate. Amino Acids, 33, 499–503.

    Article  CAS  PubMed  Google Scholar 

  • National Research Council. (2006). Nutrient requirements of dogs and cats. Washington, DC: National Academy Press.

    Google Scholar 

  • Newgard, C. B., An, J., Bain, J. R., Muehlbauer, M. J., Stevens, R. D., Lien, L. F., et al. (2009). A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metabolism, 9, 311–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Gorman, A., Wallace, M., Cottell, E., Gibney, M. J., McAuliffe, F. M., Wingfield, M., et al. (2013). Metabolic profiling of human follicular fluid identifies potential biomarkers of oocyte developmental competence. Reproduction, 146, 389–395.

    Article  PubMed  Google Scholar 

  • O’Sullivan, A., Gibney, M. J., & Brennan, L. (2011). Dietary intake patterns are reflected in metabolomic profiles: Potential role in dietary assessment studies. The American Journal of Clinical Nutrition, 93, 314–321.

    Article  PubMed  Google Scholar 

  • Pillon, N. J., Croze, M. L., Vella, R. E., Soulère, L., Lagarde, M., & Soulage, C. O. (2012). The lipid peroxidation by-product 4-hydroxy-2-nonenal (4-HNE) induces insulin resistance in skeletal muscle through both carbonyl and oxidative stress. Endocrinology, 153, 2099–2111.

    Article  CAS  PubMed  Google Scholar 

  • Prosky, L., Asp, N., Schweizer, T. F., DeVries, J. W., & Furda, I. (1992). Determination of insoluble and soluble dietary fiber in foods and food products: Collaborative study. Journal of the Association of Official Analytical Chemists, 75, 360–367.

    CAS  Google Scholar 

  • Rand, J. S., Fleeman, L. M., Farrow, H. A., Appleton, D. J., & Lederer, R. (2004). Canine and feline diabetes mellitus: Nature or nurture? Journal of Nutrition, 134, 2072S–2080S.

    CAS  PubMed  Google Scholar 

  • Rasmussen, L. G., Winning, H., Savorani, F., Toft, H., Larsen, T. M., Dragsted, L. O., et al. (2012). Assessment of the effect of high or low protein diet on the human urine metabolome as measured by NMR. Nutrients, 4, 112–131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinehr, T., Kiess, W., Kapellen, T., & Andler, W. (2004). Insulin sensitivity among obese children and adolescents, according to degree of weight loss. Pediatrics, 114, 1569–1573.

    Article  PubMed  Google Scholar 

  • Rhoads, J. M., & Wu, G. (2008). Glutamine, arginine, and leucine signaling in the intestine. Amino Acids, 37, 111–122.

    Article  Google Scholar 

  • Russell, K., Murgatroyd, P. R., & Batt, R. M. (2002). Net protein oxidation is adapted to dietary protein intake in domestic cats (Felis silvestris catus). Journal of Nutrition, 132, 456–460.

    CAS  PubMed  Google Scholar 

  • Savoye, M., Shaw, M., Dziura, J., Tamborlane, W. V., Rose, P., Guandalini, C., et al. (2007). Effects of a weight management program on body composition and metabolic parameters in overweight children: A randomized controlled trial. Journal of the American Medical Association, 297, 2697–2704.

    Article  CAS  PubMed  Google Scholar 

  • Scaglioni, S., Verduci, E., Salvioni, M., Bruzzese, M. G., Radaelli, G., Zetterström, R., et al. (2006). Plasma long-chain fatty acids and the degree of obesity in Italian children. Acta Paediatrica, 95, 964–969.

    Article  PubMed  Google Scholar 

  • Schaffer, S., Muller, W. E., & Eckert, G. P. (2005). Tocotrienols: Constitutional effects in aging and disease. Journal of Nutrition, 135, 151–154.

    CAS  PubMed  Google Scholar 

  • Silva, S. V., & Mercer, J. R. (1985). Effect of protein intake on amino acid catabolism and gluconeogenesis by isolated hepatocytes from the cat (Felis domestica). Comparative Biochemistry and Physiology, 80, 603–607.

    CAS  PubMed  Google Scholar 

  • Stella, C., Beckwith-Hall, B., Cloarec, O., Holmes, E., Lindon, J. C., Powell, J., et al. (2006). Susceptibility of human metabolic phenotypes to dietary modulation. Journal of Proteome Research, 5, 2780–2788.

    Article  CAS  PubMed  Google Scholar 

  • Stojanovic, V., & Ihle, S. (2011). Role of beta-hydroxybutyric acid in diabetic ketoacidosis: A review. The Canadian Veterinary Journal, 52, 426–430.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stolzenberg-Solomon, R. Z., Cross, A. J., Silverman, D. T., Schairer, C., Thompson, F. E., Kipnis, V., et al. (2007). Meat and meat-mutagen intake and pancreatic cancer risk in the NIH-AARP cohort. Cancer Epidemiology, Biomarkers and Prevention, 16, 2664–2675.

    Article  CAS  PubMed  Google Scholar 

  • Storey, J. D., & Tibshirani, R. (2003). Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences of the United States of America, 100, 9440–9445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R., & Gordon, J. I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444, 1027–1031.

    Article  PubMed  Google Scholar 

  • Tynkkynen, T., Mursu, J., Nurmi, T., Tuppurainen, K., Laatikainen, R., & Soininen, P. (2012). NMR protocol for determination of oxidation susceptibility of serum lipids and application of the protocol to a chocolate study. Metabolomics, 8, 386–398.

    Article  CAS  PubMed  Google Scholar 

  • Verbrugghe, A., Hesta, M., Van Weyenberg, S., Papadopoulos, G. A., Gommeren, K., Daminet, S., et al. (2010). The glucose and insulin response to isoenergetic reduction of dietary energy sources in a true carnivore: The domestic cat (Felis catus). British Journal of Nutrition, 104, 214–221.

    Article  CAS  PubMed  Google Scholar 

  • Verhoef, P., van Vliet, T., Olthof, M. R., & Katan, M. B. (2005). A high-protein diet increases postprandial but not fasting plasma total homocysteine concentrations: A dietary controlled, crossover trial in healthy volunteers. The American Journal of Clinical Nutrition, 82, 553–558.

    CAS  PubMed  Google Scholar 

  • Volek, J. S., & Westman, E. C. (2002). Very-low-carbohydrate weight-loss diets revisited. Cleveland Clinic Journal of Medicine, 69, 849–858.

    Article  PubMed  Google Scholar 

  • Wikoff, W. R., Anfora, A. T., Liu, J., Schultz, P. G., Lesley, S. A., Peters, E. C., et al. (2009). Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proceedings of the National Academy of Sciences of the United States of America, 106, 3698–3703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, J., Yang, S., Cai, S., Dong, J., Li, X., & Chen, Z. (2010). Identification of biochemical changes in lactovegetarian urine using 1H NMR spectroscopy and pattern recognition. Analytical and Bioanalytical Chemistry, 396, 1451–1463.

    Article  CAS  PubMed  Google Scholar 

  • Yasuda, K., Takashima, S., Takagi, M., Nishii, N., Ohba, Y., & Kitagawa, H. (2011). Insulin responses to administrations of amino acids and fatty acids in healthy cats. Journal of Veterinary Medical Science, 73, 1281–1286.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Nestlé Purina PetCare (St. Louis, MO, USA) for donating the experimental diets for this study. K. S. S. and P. D. designed the trials. P. D. performed the animal trials and laboratory analyses, and wrote the manuscript. J. C. J. performed the statistical analyses. All authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly S. Swanson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 153 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, P., Jones, J.C. & Swanson, K.S. Effects of dietary macronutrient composition on the fasted plasma metabolome of healthy adult cats. Metabolomics 10, 638–650 (2014). https://doi.org/10.1007/s11306-013-0617-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-013-0617-7

Keywords

Navigation